Continuum limits and exact finite-size-scaling functions for one-dimensionalO(N)-invariant spin models

[1]  Kim Application of finite size scaling to Monte Carlo simulations. , 1993, Physical review letters.

[2]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[3]  A. Wightman,et al.  PCT, spin and statistics, and all that , 1964 .

[4]  É. Brézin,et al.  Spontaneous Breakdown of Continuous Symmetries Near Two-Dimensions , 1976 .

[5]  Richard Bellman,et al.  A Brief Introduction to Theta Functions , 1960 .

[6]  Robert Shrock,et al.  Phase Transition in the Nonlinear Sigma Model in Two + Epsilon Dimensional Continuum , 1976 .

[7]  V. Vladimirov Generalized functions in mathematical physics , 1979 .

[8]  Cumrun Vafa,et al.  Theta functions, modular invariance, and strings , 1986 .

[9]  C. Itzykson,et al.  Statistical Field Theory , 1989 .

[10]  C. Domb,et al.  Extension of the high-temperature, free-energy series for the classical vector model of ferromagnetism in general spin dimensionality , 1979 .

[11]  S. Helgason Groups and geometric analysis , 1984 .

[12]  M. Stone Lattice formulation of the CPn-1 non-linear σ models , 1979 .

[13]  M. Fukushima Dirichlet forms and Markov processes , 1980 .

[14]  Antoni Wawrzynczyk,et al.  Group Representations and Special Functions , 1984 .

[15]  K. Binder The Monte Carlo method for the study of phase transitions: A review of some recent progress , 1985 .

[16]  C. Domb Finite cluster partition functions for the D-vector model , 1976 .

[17]  E. Rabinovici,et al.  The CPN−1 model: A strong coupling lattice approach , 1981 .

[18]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[19]  E. Hille Analytic Function Theory , 1961 .

[20]  D. R. Fulkerson Flow Networks and Combinatorial Operations Research , 1966 .

[21]  C. Domb Weighting of graphs for the Ising and classical vector models , 1972 .

[22]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[23]  A. Pelissetto,et al.  Strong-coupling expansion of lattice O(N) sigma models , 1995, hep-lat/9509025.

[24]  A. Sokal,et al.  Application of the O(N)-hyperspherical harmonics to the study of the continuum limits of one-dimensional σ-models and to the generation of high-temperature expansions in higher dimensions , 1995, hep-lat/9509034.

[25]  G. Shilov,et al.  PARTICULAR TYPES OF GENERALIZED FUNCTIONS , 1964 .

[26]  D. Mumford Tata Lectures on Theta I , 1982 .

[27]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .

[28]  Sokal,et al.  Multigrid Monte Carlo method. IV. One-dimensional O(4)-symmetric nonlinear sigma model. , 1995, Physical review. D, Particles and fields.

[29]  Rossi,et al.  Strong-coupling analysis of two-dimensional O(N) sigma models with N >= 3 on square, triangular, and honeycomb lattices. , 1996, Physical review. D, Particles and fields.

[30]  H. Stanley,et al.  Eigenvalue Degeneracy as a Possible ``Mathematical Mechanism'' for Phase Transitions , 1970 .

[31]  Ferreira,et al.  Extrapolating Monte Carlo simulations to infinite volume: Finite-size scaling at xi /L >> 1. , 1995, Physical review letters.

[32]  Y. Brihaye,et al.  The continuum limit of one-dimensional non-linear models , 1984 .

[33]  Edwards,et al.  New universality classes for two-dimensional sigma -models. , 1993, Physical review letters.

[34]  U. Wolff,et al.  A Numerical method to compute the running coupling in asymptotically free theories , 1991 .

[35]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[36]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[37]  H. Stanley,et al.  Exact Solution for a Linear Chain of Isotropically Interacting Classical Spins of Arbitrary Dimensionality , 1969 .

[38]  A. Polyakov Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields , 1975 .

[39]  Strong-coupling analysis of two-dimensional O(N) sigma models with N <~ 2 on square, triangular, and honeycomb lattices. , 1996, Physical review. B, Condensed matter.

[40]  G. Joyce Classical Heisenberg Model , 1967 .