Computing Frobenius maps and factoring polynomials

A new probabilistic algorithm for factoring univariate polynomials over finite fields is presented whose asymptotic running time improves upon previous results. To factor a polynomial of degree <italic>n</italic> over <bold>F<subscrpt>q</subscrpt></bold>, the algorithm uses <italic>O</italic>((<italic>n</italic><supscrpt>2</supscrpt> + <italic>n</italic> log <italic>q</italic>)•(log <italic>n</italic>)<supscrpt>2</supscrpt> log log <italic>n</italic>) arithmetic operations in <bold>F<subscrpt>q</subscrpt></bold>. The main technical innovation is a new way to compute Frobenius and trace maps in the ring of polynomials modulo the polynomial to be factored.

[1]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[2]  R. G. Swan,et al.  Factorization of polynomials over finite fields. , 1962 .

[3]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[4]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[5]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[6]  E. Berlekamp Factoring polynomials over large finite fields* , 1971, SYMSAC '71.

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[9]  David Y. Y. Yun,et al.  On square-free decomposition algorithms , 1976, SYMSAC '76.

[10]  Robert T. Moenck,et al.  On the efficiency of algorithms for polynomial factoring , 1977 .

[11]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[12]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[13]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[14]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[15]  Paul Camion Improving an algorithm for factoring polynomials over a finite field and constructing large irreducible polynomials , 1983, IEEE Trans. Inf. Theory.

[16]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[17]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.

[18]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[19]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[20]  Joachim von zur Gathen,et al.  Factoring Polynomials and Primitive Elements for Special Primes , 1987, Theor. Comput. Sci..

[21]  David G. Kirkpatrick,et al.  Addition Requirements for Matrix and Transposed Matrix Products , 1988, J. Algorithms.

[22]  A. T. Ly A Deterministic Algorithm for Factorizing Polynomials over Extensions GF(p m ) of GF(p), p a Small Prime , 1989 .

[23]  Erich Kaltofen,et al.  Solving systems of nonlinear polynomial equations faster , 1989, ISSAC '89.

[24]  Johannes Buchmann,et al.  Complexity of Algorithms in Algebraic Number Theory , 1990 .

[25]  Joachim von zur Gathen,et al.  Constructing Normal Bases in Finite Fields , 1990, J. Symb. Comput..

[26]  Victor Shoup On the Deterministic Complexity of Factoring Polynomials over Finite Fields , 1990, Inf. Process. Lett..

[27]  Joachim von zur Gathen,et al.  Boolean Circuits Versus Arithmetic Circuits , 1991, Inf. Comput..

[28]  Victor Shoup A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic , 1991, ISSAC '91.

[29]  Alfred Menezes,et al.  Subgroup Refinement Algorithms for Root Finding in GF(q) , 1992, SIAM J. Comput..

[30]  Paul S. Wang,et al.  Polynomial Factorization Sharp Bounds, Efficient Algorithms , 1993, J. Symb. Comput..

[31]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.