Crystal structure solution from experimentally determined atomic pair distribution functions

An extension of the Liga algorithm for structure solution from atomic pair distribution functions (PDFs), to handle periodic crystal structures with multiple elements in the unit cell, is described. The procedure is performed in three separate steps. First, pair distances are extracted from the experimental PDF. In the second step the Liga algorithm is used to find unit-cell sites consistent with these pair distances. Finally, the atom species are assigned over the cell sites by minimizing the overlap of their empirical atomic radii. The procedure has been demonstrated on synchrotron X-ray PDF data from 16 test samples. The structure solution was successful for 14 samples, including cases with enlarged supercells. The algorithm success rate and the reasons for the failed cases are discussed, together with enhancements that should improve its convergence and usability.

[1]  A. Rappe,et al.  Correlations between the Structure and Dielectric Properties of Pb(Sc2/3 Pb(Ti/Zr)O3 Relaxors , 2004 .

[2]  J. Bass,et al.  Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group , 1987 .

[3]  Brian J. Skinner,et al.  Unit-cell edges of natural and synthetic sphalerites , 1961 .

[4]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[7]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[8]  S J L Billinge,et al.  The Liga algorithm for ab initio determination of nanostructure. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[9]  Simon J L Billinge,et al.  Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[10]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[11]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  T. Proffen,et al.  Local structural aspects of the orthorhombic to pseudo-cubic phase transformation in La1-xCaxMnO3La1-xCaxMnO3 , 2006 .

[13]  S. Billinge Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle , 2008 .

[14]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[15]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[16]  G. A. Lager,et al.  Polyhedral thermal expansion in the TiO 2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature , 1979 .

[17]  H. Megaw Refinement of the structure of BaTiO3 and other ferroelectrics , 1962 .

[18]  P. Davies,et al.  Local structure of Pb(Sc1/2,Ta1/2)O3 and related compounds , 2000 .

[19]  K. Shankland,et al.  Structure determination from powder diffraction data. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[21]  Jason C. Cole,et al.  DASH: a program for crystal structure determination from powder diffraction data , 2006 .

[22]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[23]  S. Hull,et al.  Bond valence sum: a new soft chemical constraint for RMCProfile , 2009 .

[24]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[25]  L. Palatinus,et al.  Symmetry determination following structure solution in P1 , 2008 .

[26]  Peter Y. Zavalij,et al.  Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition , 2003 .

[27]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .