Defibrillation Current Density Distributions: A Three-dimensional Finite Element Model Of The Canine Thorax

[1]  S B Karch,et al.  Resuscitation‐Induced Myocardial Necrosis: Catecholamines and Defibrillation , 1987, The American journal of forensic medicine and pathology.

[2]  G A Ewy,et al.  Myocardial Necrosis from Direct Current Countershock: Effect of Paddle Electrode Size and Time Interval Between Discharges , 1974, Circulation.

[3]  L A Geddes,et al.  Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses. , 1980, American heart journal.

[4]  N. G. Sepulveda,et al.  Finite element analysis of cardiac defibrillation current distributions , 1990, IEEE Transactions on Biomedical Engineering.

[5]  R. Crampton,et al.  Accepted, controversial, and speculative aspects of ventricular defibrillation. , 1980, Progress in cardiovascular diseases.

[6]  D P Zipes,et al.  Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. , 1975, The American journal of cardiology.

[7]  B B Lerman,et al.  Intrathoracic current flow during transthoracic defibrillation in dogs. Transcardiac current fraction. , 1990, Circulation research.

[8]  G. La,et al.  Acute cardiac damage in dogs given multiple transthoracic shocks with a trapezoidal wave-form defibrillator. , 1977 .

[9]  J B Martins,et al.  Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. , 1988, Circulation.

[10]  G. Ewy,et al.  Effectiveness of direct current defibrillation: role of paddle electrode size. , 1977, American heart journal.

[11]  B B Lerman,et al.  Current-based versus energy-based ventricular defibrillation: a prospective study. , 1988, Journal of the American College of Cardiology.