Single-index composite quantile regression for ultra-high-dimensional data
暂无分享,去创建一个
[1] Runze Li,et al. ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.
[2] H. Zou,et al. Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.
[3] Han Liu,et al. A General Framework for Robust Testing and Confidence Regions in High-Dimensional Quantile Regression , 2014, 1412.8724.
[4] S. Geer,et al. On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.
[5] Kengo Kato,et al. Robust inference in high-dimensional approximately sparse quantile regression models , 2013 .
[6] Heng Lian,et al. A debiased distributed estimation for sparse partially linear models in diverging dimensions , 2017 .
[7] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[8] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[9] Tianxi Cai,et al. L1-Regularized Least Squares for Support Recovery of High Dimensional Single Index Models with Gaussian Designs , 2015, J. Mach. Learn. Res..
[10] Runze Li,et al. NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.
[11] Gerda Claeskens,et al. Confidence intervals for high-dimensional partially linear single-index models , 2016, J. Multivar. Anal..
[12] Heng Lian,et al. Quantile regression for the single-index coefficient model , 2017 .
[13] M. Kolar,et al. Uniform Inference for High-dimensional Quantile Regression: Linear Functionals and Regression Rank Scores , 2017, 1702.06209.
[14] Runze Li,et al. Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression , 2010 .
[15] Rong Jiang,et al. Single-index composite quantile regression for massive data , 2020, J. Multivar. Anal..
[16] Cun-Hui Zhang,et al. Confidence Intervals for Low-Dimensional Parameters With High-Dimensional Data , 2011 .
[17] W. Härdle,et al. Semi-parametric estimation of partially linear single-index models , 2006 .
[18] Martin J. Wainwright,et al. Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients , 2019, J. Mach. Learn. Res..
[19] Yaniv Plan,et al. The Generalized Lasso With Non-Linear Observations , 2015, IEEE Transactions on Information Theory.
[20] Guang Cheng,et al. Simultaneous Inference for High-Dimensional Linear Models , 2016, 1603.01295.
[21] Yan Yu,et al. Single-index quantile regression , 2010, J. Multivar. Anal..
[22] A. Belloni,et al. L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.
[23] Yuankun Zhang. Ultra-High Dimensional Single-Index Quantile Regression , 2020 .
[24] Yan Yu,et al. Estimation and variable selection for quantile partially linear single-index models , 2017, J. Multivar. Anal..
[25] Cun-Hui Zhang,et al. Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.
[26] Ying Zhu,et al. High Dimensional Inference in Partially Linear Models , 2019, AISTATS.
[27] Xi Chen,et al. Distributed High-dimensional Regression Under a Quantile Loss Function , 2019, J. Mach. Learn. Res..
[28] Rong Jiang,et al. Weighted composite quantile regression for single-index models , 2016, J. Multivar. Anal..
[29] Peter Radchenko,et al. High dimensional single index models , 2015, J. Multivar. Anal..
[30] Qianqian Zhu,et al. Estimation of linear composite quantile regression using EM algorithm , 2016 .
[31] Eliana Christou,et al. Single index quantile regression for heteroscedastic data , 2016, J. Multivar. Anal..
[32] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[33] Claudia Czado,et al. D-vine copula based quantile regression , 2015, Comput. Stat. Data Anal..
[34] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[35] Adel Javanmard,et al. Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..
[36] Linjun Tang,et al. Weighted local linear CQR for varying-coefficient models with missing covariates , 2015 .
[37] W. Härdle,et al. Single-Index-Based CoVaR With Very High-Dimensional Covariates , 2018 .
[38] Linglong Kong,et al. Advanced algorithms for penalized quantile and composite quantile regression , 2021, Comput. Stat..
[39] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[40] Aurélien Garivier,et al. On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..