Setting up meshes of interferometers - reversed local light interference method

Many interesting linear optical networks, such as lattice filters and some interferometer meshes, are difficult to fabricate precisely and cannot be configured progressively even using recent algorithms. Our approach allows a broad category of optical networks to be set up progressively and automatically, including correcting for fabrication imprecision. We null interference locally in the network based on inputs calculated by considering the network operated in reverse. Calibration is only required for the network inputs, not for individual components (though this method can also calibrate those). We illustrate specific cases of lattice filters and rectangular meshes of interferometers, and we expect the approach can be applied broadly to networks in which the light only propagates forward in the network.

[1]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[2]  Shanhui Fan,et al.  Universal modal radiation laws for all thermal emitters , 2017, Proceedings of the National Academy of Sciences.

[3]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[4]  D. Miller,et al.  Unscrambling light—automatically undoing strong mixing between modes , 2015, Light: Science & Applications.

[5]  Peter J. Winzer,et al.  Making spatial multiplexing a reality , 2014, Nature Photonics.

[6]  M.C. Wu,et al.  Dynamic Range of Frequency Modulated Direct-Detection Analog Fiber Optic Links , 2009, Journal of Lightwave Technology.

[7]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[8]  Nader Engheta,et al.  Solving integral equations with optical metamaterial-waveguide networks , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[9]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[10]  Wim Bogaerts,et al.  Demonstration of a 4 × 4-port universal linear circuit , 2016 .

[11]  David A B Miller,et al.  Reconfigurable add-drop multiplexer for spatial modes. , 2013, Optics express.

[12]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[13]  David A. B. Miller,et al.  Sorting out light , 2015, Science.

[14]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[15]  Im,et al.  Demonstration of a 4 × 4-port universal linear circuit , 2016 .

[16]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[17]  T. Shay,et al.  Theory of electronically phased coherent beam combination without a reference beam. , 2006, Optics express.

[18]  José Capmany,et al.  Integrated microwave photonics , 2013 .

[19]  David A. B. Miller,et al.  All-optical mode unscrambling on a silicon photonic chip , 2015 .

[20]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[21]  David A. B. Miller,et al.  Establishing Optimal Wave Communication Channels Automatically , 2013, Journal of Lightwave Technology.

[22]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[23]  J L O'Brien,et al.  60  dB high-extinction auto-configured Mach-Zehnder interferometer. , 2016, Optics letters.

[24]  R. Soref,et al.  Reconfigurable lattice mesh designs for programmable photonic processors and universal couplers , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[25]  Marco Carminati,et al.  Non-Invasive Monitoring of Mode-Division Multiplexed Channels on a Silicon Photonic Chip , 2015, Journal of Lightwave Technology.

[26]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[27]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[28]  D. Miller,et al.  Self-aligning universal beam coupler. , 2013, Optics express.