PrBaCo2O6−δ-Ce0.8Sm0.2O1.9 Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells: Stability and Cation Interdiffusion

The single-phase oxide PrBaCo2O6−δ and composites (100 − y)PrBaCo2O6−δ-yCe0.8Sm0.2O1.9 (y = 10–30 wt.%) were investigated as cathode materials for intermediate-temperature solid oxide fuel cells. The chemical compatibility, cation interdiffusion, thermal expansion and dc conductivity were studied. As a result, strong interdiffusion of Pr and Sm was found between PrBaCo2O6−δ and Ce0.8Sm0.2O1.9. This leads to only insignificantly decreasing thermal expansion coefficient of composite with increasing fraction of Ce0.8Sm0.2O1.9 and, thus, mixing PrBaCo2O6−δ with Ce0.8Sm0.2O1.9 does not improve thermal expansion behavior of the cathode material. Moreover, formation of poorly-conducting BaCeO3, caused by chemical interaction between the double perovskite and doped ceria, was shown to lead to pronounced drop in the electrical conductivity of the composite cathode material with increasing Ce0.8Sm0.2O1.9 content.

[1]  C. Mims,et al.  Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations , 2007 .

[2]  Yen‐Pei Fu,et al.  Oxygen transportation, electrical conductivity and electrochemical properties of layered perovskite SmBa0.5Sr0.5Co2O5+δ , 2017 .

[3]  Guntae Kim,et al.  The effect of calcium doping on the improvement of performance and durability in a layered perovskite cathode for intermediate-temperature solid oxide fuel cells , 2015 .

[4]  Dmitry Medvedev,et al.  Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes , 2016 .

[5]  D. Bevan,et al.  Chapter 28 Mixed rare earth oxides , 1979 .

[6]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[7]  B. Yildiz,et al.  Chemomechanical properties and microstructural stability of nanocrystalline Pr-doped ceria: An in situ X-ray diffraction investigation , 2011 .

[8]  R. Frison,et al.  Study of oxygen tracer diffusion in PrBaCo2O5.74 by SIMS , 2012 .

[9]  H Zhao,et al.  Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6−δ cathode for intermediate-temperature solid oxide fuel cells , 2016 .

[10]  T. Norby,et al.  Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells , 2015 .

[11]  Giovanni Dotelli,et al.  Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review , 2015 .

[12]  T. Etsell,et al.  Electrical properties of solid oxide electrolytes , 1970 .

[13]  P. Tiwari,et al.  Oxygen anion diffusion in double perovskite GdBaCo2O5+δ and LnBa0.5Sr0.5Co2−xFexO5+δ (Ln = Gd, Pr, Nd) electrodes , 2016 .

[14]  Zongping Shao,et al.  Assessment of PrBaCo2O5+δ + Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells , 2010 .

[15]  E. Cordfunke,et al.  The thermochemical properties of BaCeO3(s) and SrCeO3(s) fromT=(5 to 1500) K , 1998 .

[16]  T. Chen,et al.  The effect of potassium on the properties of PrBa1−xCo2O5+δ (x = 0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells , 2016 .

[17]  T. He,et al.  Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells , 2010 .

[18]  H Zhao,et al.  Co-deficient PrBaCo2−xO6−δ perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: Enhanced electrochemical performance and oxygen reduction kinetics , 2018 .

[19]  A. Tarancón,et al.  Stability, chemical compatibility and electrochemical performance of GdBaCo2O5 + x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells , 2008 .

[20]  Zongping Shao,et al.  Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte , 2009 .

[21]  M. Itoh,et al.  Electric, magnetic, and calorimetric properties and phase diagram of Pr 1 − x Ca x CoO 3 ( 0 x 0 . 5 5 ) , 2004 .

[22]  G. Meng,et al.  High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode , 2009 .

[23]  S. Sahu,et al.  Energetics of lanthanide cobalt perovskites: LnCoO3−δ (Ln = La, Nd, Sm, Gd) , 2015 .

[24]  P. Tsiakaras,et al.  The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2−δ (Ln = Gd, Sm, La) solid-state electrolyte , 2008 .

[25]  Keguang Yao,et al.  High-performance PrBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cell , 2010 .

[26]  L. Suescun,et al.  Anomalous X-ray diffraction study of Pr-substituted BaCeO3 - δ. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[27]  Yaohui Zhang,et al.  Performance degradation of double-perovskite PrBaCo 2 O 5+δ oxygen electrode in CO 2 containing atmospheres , 2017 .

[28]  Guan Zhang,et al.  Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+δ (x = 0, 0.5, 1) as promising cathodes for IT-SOFCs , 2018 .

[29]  D. Tsvetkov,et al.  Oxygen content and thermodynamics of formation of double perovskites REBaCo2O6−δ (RE = Gd, Pr) , 2014 .

[30]  Zongping Shao,et al.  Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode. , 2010, The journal of physical chemistry. A.

[31]  J. Park,et al.  Preparation and Oxygen Permeability of ReBaCo2O5+δ (Re = Pr, Nd, Y) Ceramic Membranes , 2012 .

[32]  Dae‐Joon Kim,et al.  Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite‐Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions , 1989 .

[33]  V. Cherepanov,et al.  Thermodynamic stability of ternary oxides in LnMO (Ln = La, Pr, Nd; M = Co, Ni, Cu) systems , 1988 .

[34]  Xuening Jiang,et al.  Effects of Pr 3+ -deficiency on structure and properties of PrBaCo 2 O 5+δ cathode material-A comparison with Ba 2+ -deficiency case , 2014 .

[35]  Yaohui Zhang,et al.  Characterization of GdBaCo2O5+δ cathode for IT-SOFCs , 2008 .

[36]  G. Meng,et al.  Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells , 2010 .

[37]  V. Thangadurai,et al.  Kinetics and thermodynamics of carbonation of a promising SOFC cathode material La0.5Ba0.5CoO3−δ (LBC) , 2013 .

[38]  Wuzong Zhou,et al.  Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells , 2009 .

[39]  H Zhao,et al.  A-site Ba-deficiency layered perovskite EuBa1−xCo2O6−δ cathodes for intermediate-temperature solid oxide fuel cells: Electrochemical properties and oxygen reduction reaction kinetics , 2017 .

[40]  Zongping Shao,et al.  Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs , 2008 .

[41]  G. Meng,et al.  Characterization and evaluation of NdBaCo2O5+δ cathode for proton-conducting solid oxide fuel cells , 2010 .

[42]  B. Boukamp,et al.  Oxygen surface exchange kinetics on PrBaCo2O5+δ , 2014 .

[43]  L. Gauckler,et al.  CeO2-CoO phase diagram , 2003 .