Incremental construction of the delaunay triangulation and the delaunay graph in medium dimension

We describe a new implementation of the well-known incremental algorithm for constructing Delaunay triangulations in any dimension. Our implementation follows the exact computing paradigm and is fully robust. Extensive comparisons show that our implementation outperforms the best currently available codes for exact convex hulls and Delaunay triangulations, compares very well to the fast non-exact QHull implementation and can be used for quite big input sets in spaces of dimensions up to 6. To circumvent prohibitive memory usage, we also propose a modification of the algorithm that uses and stores only the Delaunay graph (the edges of the full triangulation). We show that a careful implementation of the modified algorithm performs only 6 to 8 times slower than the original algorithm while drastically reducing memory usage in dimension 4 or above.

[1]  Arthur R. Butz,et al.  Alternative Algorithm for Hilbert's Space-Filling Curve , 1971, IEEE Transactions on Computers.

[2]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[3]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..

[4]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[5]  Jean-Daniel Boissonnat,et al.  On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..

[6]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[7]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[8]  Sylvain Pion,et al.  Interval arithmetic yields efficient dynamic filters for computational geometry , 1998, SCG '98.

[9]  Erik D. Demaine,et al.  Adaptive set intersections, unions, and differences , 2000, SODA '00.

[10]  J. Cameron Number as Types , 2000 .

[11]  Olivier Devillers,et al.  Walking in a triangulation , 2001, SCG '01.

[12]  Daniel Thalmann,et al.  Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information , 2001, J. Graphics, GPU, & Game Tools.

[13]  Edgar A. Ramos,et al.  I/O-Efficient Construction of Voronoi Diagrams , 2002 .

[14]  Mariette Yvinec,et al.  Triangulations in CGAL , 2002, Comput. Geom..

[15]  Olivier Devillers,et al.  Walking in a Triangulation , 2002, Int. J. Found. Comput. Sci..

[16]  Guy E. Blelloch,et al.  Compact representations of separable graphs , 2003, SODA '03.

[17]  Günter Rote,et al.  Incremental constructions con BRIO , 2003, SCG '03.

[18]  Guohua Jin,et al.  SFCGen: A framework for efficient generation of multi-dimensional space-filling curves by recursion , 2005, TOMS.

[19]  Guy E. Blelloch,et al.  Compact representations of simplicial meshes in two and three dimensions , 2005, Int. J. Comput. Geom. Appl..

[20]  J. Shewchuk,et al.  Streaming computation of Delaunay triangulations , 2006, SIGGRAPH '06.

[21]  Jean-Philippe Pons,et al.  Spatio-Temporal Shape from Silhouette using Four-Dimensional Delaunay Meshing , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  W. Schaap DTFE : the Delaunay Tessellation Field Estimator , 2007 .

[23]  J. Boissonnat,et al.  An efficient implementation of Delaunay triangulations in medium dimensions , 2008 .

[24]  S. Colombi,et al.  Phase-space structures – I. A comparison of 6D density estimators , 2008, 0810.0504.

[25]  J. Eeckhout,et al.  Spatial Sorting , 2014, Journal of Political Economy.