Difference of BiGaussian (DoBG): A new edge detector for well localized edge map generation

Edge map of an image contains a lot of information about objects in the image. That is why edge detection has been widely used in numerous image processing and vision algorithms. Although there has been a lot of research on this topic, however, most of the practically used algorithms, like a Canny edge detector, still lack basic requirement of edge localization. If noise is to be removed by using a low pass filter then edges are blurred. Contrarily, if edges have to be preserved then noise severely corrupts the edge map. In this paper, we have proposed a new method of edge detection, Difference of BiGaussian (DoBG) edge Filter, which simultaneously removes noise from real life images, while generating well localized edges. We have presented detailed analysis of our operator using 1D and 2D signals. Moreover, experimental results on published data sets show the robustness and quality of our detector.

[1]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[2]  Sean Dougherty,et al.  Edge Detector Evaluation Using Empirical ROC Curves , 2001, Comput. Vis. Image Underst..

[3]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[4]  G. Deng,et al.  An adaptive Gaussian filter for noise reduction and edge detection , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[5]  Savvas Nikiforou,et al.  Comparison of edge detection algorithms using a structure from motion task , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Ramesh C. Jain,et al.  Pulse and staircase edge models , 1986, Comput. Vis. Graph. Image Process..

[7]  Mitra Basu,et al.  Image enhancement using a human visual system model , 1997, Pattern Recognit..

[8]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Vinciane Lacroix The primary raster: a multiresolution image description , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[10]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  V. Berzins Accuracy of laplacian edge detectors , 1984 .

[12]  T.S. Huang,et al.  Optimal edge detection in two-dimensional images , 1996, IEEE Trans. Image Process..

[13]  Mamta Juneja,et al.  Performance Evaluation of Edge Detection Techniques for Images in Spatial Domain , 2009 .

[14]  James J. Clark Authenticating Edges Produced by Zero-Crossing Algorithms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Mitra Basu,et al.  Gaussian derivative model for edge enhancement , 1994, Pattern Recognit..

[16]  Mitra Basu,et al.  Gaussian-based edge-detection methods - a survey , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[17]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Mubarak Shah,et al.  Edge Contours Using Multiple Scales , 1990, ECCV.

[20]  Jörg Weule,et al.  Non-Linear Gaussian Filters Performing Edge Preserving Diffusion , 1995, DAGM-Symposium.

[21]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  Kim L. Boyer,et al.  "On the localization performance measure and optimal edge detection" , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  A. Ardeshir Goshtasby On edge focusing , 1994, Image Vis. Comput..

[27]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[28]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.