A computational interpretation of open induction
暂无分享,去创建一个
[1] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[2] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .
[3] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Georg Kreisel,et al. Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis , 1966, Journal of Symbolic Logic.
[5] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[6] D. Dalen. Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .
[7] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[8] H. Luckhardt. Extensional Godel functional interpretation;: A consistency proof of classical analysis , 1973 .
[9] J. Diller. Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .
[10] G.D. Plotkin,et al. LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..
[11] Y. Ershov. Model of Partial Continuous Functionals , 1977 .
[12] Harvey M. Friedman,et al. Classically and intuitionistically provably recursive functions , 1978 .
[13] D. Normann. Recursion on the countable functionals , 1980 .
[14] D. Normann. The countable functionals , 1980 .
[15] A. S. Troelstra,et al. Extended Bar Induction of Type Zero , 1980 .
[16] Jean-Claude Raoult,et al. Proving Open Properties by Induction , 1988, Inf. Process. Lett..
[17] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[18] Thierry Coquand,et al. Constructive Topology and Combinatorics , 1992, Constructivity in Computer Science.
[19] Solomon Feferman,et al. Gödel's Dialectica Interpretation and Its Two-Way Stretch , 1993, Kurt Gödel Colloquium.
[20] Helmut Schwichtenberg,et al. Ordinal Bounds for Programs , 1995 .
[21] T. Coquand. A Note on the Open Induction Principle , 1997 .
[22] Jeremy Avigad,et al. Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .
[23] Thierry Coquand,et al. On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.
[24] P. Howard,et al. Consequences of the axiom of choice , 1998 .
[25] Ulrich Kohlenbach,et al. On uniform weak König's lemma , 2002, Ann. Pure Appl. Log..
[26] Helmut Schwichtenberg,et al. Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..
[27] Paulo Oliva,et al. MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE , 2004 .