Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major

Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems‐based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof‐of‐concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage‐specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets.

[1]  S. Wakil,et al.  THE MECHANISM OF FATTY ACID SYNTHESIS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Simpson,et al.  Isolation and characterization of kinetoplast DNA from Leishmania tarentolae. , 1971, Journal of molecular biology.

[3]  M. Vessal,et al.  Leishmania species: fatty acid composition of promastigotes. , 1974, Experimental parasitology.

[4]  D. Beach,et al.  Lipids of Leishmania promastigotes. , 1979, The Journal of parasitology.

[5]  U. Bachrach,et al.  Leishmania spp.: cellular levels and synthesis of polyamines during growth cycles. , 1979, Experimental parasitology.

[6]  U. Bachrach,et al.  Leishmania spp.: effect of inhibitors on growth and on polyamine and macromolecular syntheses. , 1979, Experimental parasitology.

[7]  Polyamines and the growth of leishmanial parasites. , 1981, Medical biology.

[8]  K. Stuart Kinetoplast DNA, mitochondrial DNA with a difference. , 1983, Molecular and biochemical parasitology (Print).

[9]  K. Stuart Kinetoplast DNA, mitochondria DNA with a difference , 1983 .

[10]  D. Rowe,et al.  The Special Programme for Research and Training in Tropical Diseases , 1984 .

[11]  F. Opperdoes,et al.  The occurrence of glycosomes (microbodies) in the promastigote stage of four major Leishmania species. , 1984, Molecular and biochemical parasitology.

[12]  B. Chait,et al.  Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. , 1985, Science.

[13]  David H. Molyneux,et al.  Morphology, ultrastructure and life cycles. , 1987 .

[14]  D. G. Davis,et al.  Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Remaley,et al.  Biochemistry of the Leishmania species. , 1988, Microbiological reviews.

[16]  P. Hellung-Larsen,et al.  Cell volume and dry weight of cultured Tetrahymena. , 1989, Journal of cell science.

[17]  C. Wang,et al.  Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes , 1991, The Journal of cell biology.

[18]  A. Fairlamb,et al.  Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. , 1992, The Biochemical journal.

[19]  F. Opperdoes,et al.  Comparative physiology of two protozoan parasites, Leishmania donovani and Trypanosoma brucei, grown in chemostats , 1992, Journal of bacteriology.

[20]  F. Opperdoes,et al.  The glycosomes of the Kinetoplastida. , 1993, Biochimie.

[21]  B. Palsson,et al.  Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns , 1993 .

[22]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[23]  Amit Varma,et al.  Parametric sensitivity of stoichiometric flux balance models applied to wild‐type Escherichia coli metabolism , 1995, Biotechnology and bioengineering.

[24]  Martin Olivier,et al.  Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages , 1997, The EMBO journal.

[25]  H. Hwang,et al.  Genetic Analysis of Purine Metabolism in Leishmania donovani * , 1997, The Journal of Biological Chemistry.

[26]  H. Ikenaga,et al.  Functional Evidence for UDP-galactose Transporter inSaccharomyces cerevisiae through the in Vivo Galactosylation and in Vitro Transport Assay* , 1998, The Journal of Biological Chemistry.

[27]  A. Fairlamb,et al.  Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus , 1998, Molecular microbiology.

[28]  P. Myler,et al.  Xanthine Phosphoribosyltransferase from Leishmania donovani , 1999, The Journal of Biological Chemistry.

[29]  D. Sereno,et al.  Leishmania spp: completely defined medium without serum and macromolecules (CDM/LP) for the continuous in vitro cultivation of infective promastigote forms. , 1999, The American journal of tropical medicine and hygiene.

[30]  A. Fairlamb,et al.  Ornithine Decarboxylase Gene Deletion Mutants of Leishmania donovani * , 1999, The Journal of Biological Chemistry.

[31]  Barbara M. Bakker,et al.  Compartmentation protects trypanosomes from the dangerous design of glycolysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Fairlamb,et al.  The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. , 2000, Journal of molecular biology.

[34]  A. Fairlamb,et al.  Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress , 2000, Molecular microbiology.

[35]  F. Hidalgo-Zarco,et al.  Trypanosomal dUTPases as potential targets for drug design. , 2001, Current protein & peptide science.

[36]  N. Carter,et al.  Genetic analysis of spermidine synthase from Leishmania donovani. , 2001, Molecular and biochemical parasitology.

[37]  Ming Chen,et al.  Inhibition of Fumarate Reductase inLeishmania major and L. donovani by Chalcones , 2001, Antimicrobial Agents and Chemotherapy.

[38]  T. Ilg,et al.  Disruption of mannose activation in Leishmania mexicana: GDP‐mannose pyrophosphorylase is required for virulence, but not for viability , 2001, The EMBO journal.

[39]  Thomas Ilg,et al.  The Role of Phosphomannose Isomerase in Leishmania mexicana Glycoconjugate Synthesis and Virulence* , 2001, The Journal of Biological Chemistry.

[40]  J. Concepción,et al.  Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. , 2002, Molecular and biochemical parasitology.

[41]  Fabio Zicker,et al.  Strategic emphases for tropical diseases research: a TDR perspective. , 2002, Trends in parasitology.

[42]  W. de Souza Special organelles of some pathogenic protozoa , 2002, Parasitology research.

[43]  J. Sullivan,et al.  Cultivation of Clinically Significant Hemoflagellates , 2002, Clinical Microbiology Reviews.

[44]  J. Donelson,et al.  The Genome of the African Trypanosome , 2002 .

[45]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[46]  Michael A. J. Ferguson,et al.  Galactose metabolism is essential for the African sleeping sickness parasite Trypanosoma brucei , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Fairlamb,et al.  Peptoid inhibition of trypanothione reductase as a potential antitrypanosomal and antileishmanial drug lead , 2002, Amino Acids.

[48]  André Schneider,et al.  Mitochondrial Substrate Level Phosphorylation Is Essential for Growth of Procyclic Trypanosoma brucei * , 2002, The Journal of Biological Chemistry.

[49]  N. Carter,et al.  S-adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducers. , 2002, The Journal of biological chemistry.

[50]  M. McConville,et al.  Evidence That Intracellular β1-2 Mannan Is a Virulence Factor in Leishmania Parasites* , 2003, Journal of Biological Chemistry.

[51]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[52]  J. Urbina,et al.  Specific chemotherapy of Chagas disease: controversies and advances. , 2003, Trends in parasitology.

[53]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[54]  R. Krauth-Siegel,et al.  The Parasite-Specific Trypanothione Metabolism of Trypanosoma and Leishmania , 2003, Biological chemistry.

[55]  Sean Thomas,et al.  Transcription in kinetoplastid protozoa: why be normal? , 2003, Microbes and infection.

[56]  F. Hsu,et al.  Sphingolipids are essential for differentiation but not growth in Leishmania , 2003, The EMBO journal.

[57]  S. Beverley Protozomics: trypanosomatid parasite genetics comes of age , 2003, Nature Reviews Genetics.

[58]  F. Opperdoes,et al.  Evolution of energy metabolism and its compartmentation in Kinetoplastida , 2003, Kinetoplastid biology and disease.

[59]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[60]  S. Croft,et al.  Leishmaniasis: new approaches to disease control , 2003, BMJ : British Medical Journal.

[61]  Philippe Diolez,et al.  ATP Generation in the Trypanosoma brucei Procyclic Form , 2003, Journal of Biological Chemistry.

[62]  Daniel J Rigden,et al.  Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. , 2003, European journal of biochemistry.

[63]  M. Gates,et al.  Dry to wet weight biomass conversion constant for Tetrahymena elliotti (Ciliophora, Protozoa) , 1982, Oecologia.

[64]  W. de Souza,et al.  Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi. , 2004, International journal of antimicrobial agents.

[65]  A. Danchin,et al.  Bacterial variations on the methionine salvage pathway , 2004, BMC Microbiology.

[66]  G. Stormo,et al.  Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. , 2004, Molecular and biochemical parasitology.

[67]  K. Gibson,et al.  Arginase Plays a Pivotal Role in Polyamine Precursor Metabolism in Leishmania , 2004, Journal of Biological Chemistry.

[68]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[69]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[70]  T. Smith,et al.  The myo-inositol-1-phosphate synthase gene is essential in Trypanosoma brucei. , 2005, Biochemical Society Transactions.

[71]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[72]  J. Nielsen,et al.  From genomes to in silico cells via metabolic networks. , 2005, Current opinion in biotechnology.

[73]  Y. Shouche,et al.  Molecular Characterization of the Hexokinase Gene From Leishmania major , 2005, The Journal of parasitology.

[74]  A. Schnaufer,et al.  The F1‐ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function , 2005, The EMBO journal.

[75]  Peter Rohloff,et al.  Acidocalcisomes ? conserved from bacteria to man , 2005, Nature Reviews Microbiology.

[76]  C. Francke,et al.  Reconstructing the metabolic network of a bacterium from its genome. , 2005, Trends in microbiology.

[77]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[78]  M. Lipoldová,et al.  Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis , 2006, Nature Reviews Genetics.

[79]  Erwin P. Gianchandani,et al.  Flux balance analysis in the era of metabolomics , 2006, Briefings Bioinform..

[80]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[81]  R. Panizzutti,et al.  The occurrence of free D-alanine and an alanine racemase activity in Leishmania amazonensis. , 2006, FEMS microbiology letters.

[82]  C. Forst Host-pathogen systems biology. , 2006, Drug discovery today.

[83]  M. McConville,et al.  Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  B. Ullman,et al.  Leishmania donovani singly deficient in HGPRT, APRT or XPRT are viable in vitro and within mammalian macrophages. , 2006, Molecular and biochemical parasitology.

[85]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[86]  Samuel H. Payne,et al.  Retention and Loss of Amino Acid Biosynthetic Pathways Based on Analysis of Whole-Genome Sequences , 2006, Eukaryotic Cell.

[87]  Jean-Pierre Szikora,et al.  In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. , 2006, Molecular and biochemical parasitology.

[88]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[89]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[90]  K. Leifso,et al.  Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. , 2007, Molecular and biochemical parasitology.

[91]  P. T. Englund,et al.  A fatty-acid synthesis mechanism specialized for parasitism , 2007, Nature Reviews Microbiology.

[92]  Bernhard O. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007 .

[93]  Y. Pérez-Pertejo,et al.  S-Adenosylmethionine in protozoan parasites: functions, synthesis and regulation. , 2007, Molecular and biochemical parasitology.

[94]  Jong Myoung Park,et al.  Genome-scale analysis of Mannheimia succiniciproducens metabolism. , 2007, Biotechnology and bioengineering.

[95]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[96]  Sumana Sanyal,et al.  De Novo Sphingolipid Synthesis Is Essential for Viability, but Not for Transport of Glycosylphosphatidylinositol-Anchored Proteins, in African Trypanosomes , 2007, Eukaryotic Cell.

[97]  F. Opperdoes,et al.  The metabolic repertoire of Leishmania and implications for drug discovery , 2008 .

[98]  Jason A. Papin,et al.  * Corresponding authors , 2006 .