On the Topology of the Combinatorial Flag Varieties

We prove that the simplicial complex Ωn of chains of matroids (with respect to the ordering by the quotient relation) on n elements is shellable. This follows from a more general result on shellability of the simplicial complex of W -matroids for an arbitrary finite Coxeter group W , and generalises the well-known results by Solomon—Tits and Björner on spherical buildings.

[1]  Alexandre V. Borovik,et al.  Combinatorial Flag Varieties , 2000, J. Comb. Theory, Ser. A.

[2]  Maxim Kontsevich,et al.  Feynman Diagrams and Low-Dimensional Topology , 1994 .

[3]  C. Curtis The steinberg character of a finite group with a (B, N)-pair , 1966 .

[4]  D. Kozlov General lexicographic shellability and orbit arrangements , 1997 .

[5]  M. Kontsevich FORMAL (NON)-COMMUTATIVE SYMPLECTIC GEOMETRY , 1993 .

[6]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[7]  Matroid Homology , 1999 .

[8]  I M Gel'fand,et al.  Combinatorial geometries and torus strata on homogeneous compact manifolds , 1987 .

[9]  B. Sturmfels Oriented Matroids , 1993 .

[10]  D. Gale Optimal assignments in an ordered set: An application of matroid theory , 1968 .

[11]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[12]  Alexandre V. Borovik,et al.  On exchange properties for Coxeter matroids and oriented matroids , 1998, Discret. Math..

[13]  Vinay V. Deodhar A splitting criterion for the bruhat orderings on coxeter groups , 1987 .

[14]  Michelle L. Wachs,et al.  On lexicographically shellable posets , 1983 .

[15]  J. Whitehead,et al.  Simple Homotopy Types , 1950 .

[16]  J. L. Bryant Piecewise Linear Topology , 2001 .

[17]  Bruna Tanaka Cremonini,et al.  Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.

[18]  Deborah Monique,et al.  Authors' addresses , 2004 .

[19]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[20]  I. Gelfand,et al.  Combinatorial Geometry in Characteristic 1 , 1999 .

[21]  Anders Björner,et al.  Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings , 1984 .

[22]  Vinay V. Deodhar Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .

[23]  Alexandre V. Borovik,et al.  Representations of Matroids in Semimodular Lattices , 2001, Eur. J. Comb..