Enhanced construction of gene regulatory networks using hub gene information

[1]  Jie Wu,et al.  Overexpression of major CDKN3 transcripts is associated with poor survival in lung adenocarcinoma , 2015, British Journal of Cancer.

[2]  Guanghua Xiao,et al.  Statistical completion of a partially identified graph with applications for the estimation of gene regulatory networks. , 2015, Biostatistics.

[3]  Cathy H. Wu,et al.  Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing , 2015, Proceedings of the National Academy of Sciences.

[4]  Guanghua Xiao,et al.  Identifying CDKN3 Gene Expression as a Prognostic Biomarker in Lung Adenocarcinoma via Meta-analysis , 2015, Cancer informatics.

[5]  Xingming Zhao,et al.  Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks , 2014, Nucleic acids research.

[6]  Yang Xie,et al.  Ensemble-Based Network Aggregation Improves the Accuracy of Gene Network Reconstruction , 2014, PloS one.

[7]  D. Xie,et al.  RACK1, a versatile hub in cancer , 2014, Oncogene.

[8]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[9]  Milind B. Suraokar,et al.  A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients , 2013, Clinical Cancer Research.

[10]  Julio Collado-Vides,et al.  RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..

[11]  D. Zheleva,et al.  Aurora kinase inhibitors: Progress towards the clinic , 2012, Investigational New Drugs.

[12]  Min Chen,et al.  Comparing Statistical Methods for Constructing Large Scale Gene Networks , 2012, PloS one.

[13]  Trevor J. Hastie,et al.  The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.

[14]  Xing-Ming Zhao,et al.  Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information , 2012, Bioinform..

[15]  Qiang Liu,et al.  Learning Scale Free Networks by Reweighted L1 regularization , 2011, AISTATS.

[16]  J. Friedman,et al.  New Insights and Faster Computations for the Graphical Lasso , 2011 .

[17]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[18]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[19]  Wei Pan,et al.  Predictor Network in Penalized Regression with Application to Microarray Data” , 2009 .

[20]  Keitaro Matsuo,et al.  Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  Wei Pan,et al.  Network-based multiple locus linkage analysis of expression traits , 2009, Bioinform..

[22]  Faming Liang,et al.  Author's Personal Copy Computational Statistics and Data Analysis Learning Bayesian Networks for Discrete Data , 2022 .

[23]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[24]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[25]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[26]  Gianluca Bontempi,et al.  minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information , 2008, BMC Bioinformatics.

[27]  Brian H. Dunford-Shore,et al.  Somatic mutations affect key pathways in lung adenocarcinoma , 2008, Nature.

[28]  Igor Jurisica,et al.  Gene expression–based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study , 2008, Nature Medicine.

[29]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[30]  W. Wong,et al.  Learning Causal Bayesian Network Structures From Experimental Data , 2008 .

[31]  K. Lange,et al.  Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.

[32]  Wei Pan,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm612 Systems biology , 2022 .

[33]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[34]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[35]  P. Ja,et al.  Inference in Bayesian Networks , 1999, AI Mag..

[36]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[37]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[38]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[39]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[40]  M. Tyers,et al.  Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network , 2006, PLoS biology.

[41]  A. Elofsson,et al.  What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? , 2006, Genome Biology.

[42]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[43]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[44]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[45]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[46]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[47]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[48]  Carl Virtanen,et al.  Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles , 2004, The Lancet.

[49]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[50]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[51]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[52]  Stan Pounds,et al.  Estimating the Occurrence of False Positives and False Negatives in Microarray Studies by Approximating and Partitioning the Empirical Distribution of P-values , 2003, Bioinform..

[53]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[54]  T. Jaakkola,et al.  Bayesian Network Approach to Cell Signaling Pathway Modeling , 2002, Science's STKE.

[55]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[56]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[57]  D. Hunter,et al.  Optimization Transfer Using Surrogate Objective Functions , 2000 .

[58]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[59]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.