Elucidating Hyperconjugation from Electronegativity to Predict Drug Conformational Energy in a High Throughput Manner

Computational chemists use structure-based drug design and molecular dynamics of drug/protein complexes which require an accurate description of the conformational space of drugs. Organic chemists use qualitative chemical principles such as the effect of electronegativity on hyperconjugation, the impact of steric clashes on stereochemical outcome of reactions, and the consequence of resonance on the shape of molecules to rationalize experimental observations. While computational chemists speak about electron densities and molecular orbitals, organic chemists speak about partial charges and localized molecular orbitals. Attempts to reconcile these two parallel approaches such as programs for natural bond orbitals and intrinsic atomic orbitals computing Lewis structures-like orbitals and reaction mechanism have appeared. In the past, we have shown that encoding and quantifying chemistry knowledge and qualitative principles can lead to predictive methods. In the same vein, we thought to understand the conformational behaviors of molecules and to encode this knowledge back into a molecular mechanics tool computing conformational potential energy and to develop an alternative to atom types and training of force fields on large sets of molecules. Herein, we describe a conceptually new approach to model torsion energies based on fundamental chemistry principles. To demonstrate our approach, torsional energy parameters were derived on-the-fly from atomic properties. When the torsional energy terms implemented in GAFF, Parm@Frosst, and MMFF94 were substituted by our method, the accuracy of these force fields to reproduce MP2-derived torsional energy profiles and their transferability to a variety of functional groups and drug fragments were overall improved. In addition, our method did not rely on atom types and consequently did not suffer from poor automated atom type assignments.

[1]  Nicolas Moitessier,et al.  Docking Ligands into Flexible and Solvated Macromolecules. 6. Development and Application to the Docking of HDACs and other Zinc Metalloenzymes Inhibitors , 2014, J. Chem. Inf. Model..

[2]  Paul R. Gerber,et al.  Charge distribution from a simple molecular orbital type calculation and non-bonding interaction terms in the force field MAB , 1998, J. Comput. Aided Mol. Des..

[3]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[4]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[5]  B. Kuhn,et al.  Validation and use of the MM-PBSA approach for drug discovery. , 2005, Journal of medicinal chemistry.

[6]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[7]  William L. Jorgensen,et al.  PERFORMANCE OF THE AMBER94, MMFF94, AND OPLS-AA FORCE FIELDS FOR MODELING ORGANIC LIQUIDS , 1996 .

[8]  Nathanael Weill,et al.  Toward a computational tool predicting the stereochemical outcome of asymmetric reactions: Development of the molecular mechanics‐based program ACE and application to asymmetric epoxidation reactions , 2011, J. Comput. Chem..

[9]  D. Tieleman,et al.  Force fields for classical molecular dynamics. , 2013, Methods in molecular biology.

[10]  X. Daura,et al.  Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme , 2004, Journal of biomolecular NMR.

[11]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[12]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[13]  Karl N. Kirschner,et al.  Solvent interactions determine carbohydrate conformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[15]  Francesco Marchetti,et al.  Towards the Systematic Exploration of Chemical Space , 2012 .

[16]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[17]  G. Prabhu,et al.  Diversity-Oriented Asymmetric Synthesis , 2014 .

[18]  J. L. Willett,et al.  Computational studies on carbohydrates: in vacuo studies using a revised AMBER force field, AMB99C, designed for alpha-(1-->4) linkages. , 2000, Carbohydrate research.

[19]  Wilfred F. van Gunsteren,et al.  Parametrization of aliphatic CHn united atoms of GROMOS96 force field , 1998, J. Comput. Chem..

[20]  N. Anh Regio- and stereo-selectivities in some nucleophilic reactions , 1980 .

[21]  Christopher R. Corbeil,et al.  Toward a computational tool predicting the stereochemical outcome of asymmetric reactions: development and application of a rapid and accurate program based on organic principles. , 2008, Angewandte Chemie.

[22]  Karl-Heinz Ott,et al.  Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations , 1996, J. Comput. Chem..

[23]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996, J. Comput. Chem..

[24]  Nicolas Moitessier,et al.  Virtual screening and computational optimization for the discovery of covalent prolyl oligopeptidase inhibitors with activity in human cells. , 2012, Journal of medicinal chemistry.

[25]  Wilfred F van Gunsteren,et al.  GROMOS++ Software for the Analysis of Biomolecular Simulation Trajectories. , 2011, Journal of chemical theory and computation.

[26]  Gerald Knizia,et al.  Electron flow in reaction mechanisms--revealed from first principles. , 2015, Angewandte Chemie.

[27]  Lionel Goodman,et al.  Hyperconjugation not steric repulsion leads to the staggered structure of ethane , 2001, Nature.

[28]  T. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[29]  I. Alabugin,et al.  Stereoelectronic Effects and General Trends in Hyperconjugative Acceptor Ability of σ Bonds , 2002 .

[30]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[31]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[32]  The role of intra- and intermolecular hydrogen bonds in the formation of β-cyclodextrin head-to-head and head-to-tail dimers. The results of ab initio and semiempirical quantum-chemical calculations , 2001 .

[33]  Jenn-Huei Lii,et al.  An improved force field (MM4) for saturated hydrocarbons , 1996, J. Comput. Chem..

[34]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[35]  Jiali Gao,et al.  Theoretical analysis of the rotational barrier of ethane. , 2007, Accounts of chemical research.

[36]  J Polanski,et al.  Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. , 2012, Current medicinal chemistry.

[37]  R. Pearson,et al.  Absolute electronegativity and hardness correlated with molecular orbital theory. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Manoharan,et al.  Effect of Double-Hyperconjugation on the Apparent Donor Ability of σ-Bonds: Insights from the Relative Stability of δ-Substituted Cyclohexyl Cations , 2004 .

[39]  Paul R. Gerber,et al.  MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry , 1995, J. Comput. Aided Mol. Des..

[40]  I. Hargittai,et al.  Group electronegativities from benzene ring deformations: A quantum chemical study , 2004 .

[41]  Yang Yang,et al.  An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems , 2003, J. Comput. Chem..

[42]  K. Gundertofte,et al.  A comparison of conformational energies calculated by several molecular mechanics methods , 1996 .

[43]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[44]  R. Thomas. Myers Hard and soft acids and bases , 2002 .

[45]  Stuart L Schreiber,et al.  A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.

[46]  W. V. Gunsteren,et al.  Validation of the 53A6 GROMOS force field , 2005, European Biophysics Journal.

[47]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[48]  Didier Rognan,et al.  Assessing the Scaffold Diversity of Screening Libraries , 2006, J. Chem. Inf. Model..

[49]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[50]  T. Halgren MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, Journal of computational chemistry.

[51]  O. Eisenstein,et al.  Orbital factors and asymmetric induction , 1973 .

[52]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[53]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[54]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[55]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[56]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[57]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[58]  P. Kirkpatrick,et al.  Chemical space , 2004, Nature.

[59]  T. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996 .

[60]  Adam Nelson,et al.  A conceptual framework for analysing and planning synthetic approaches to diverse lead-like scaffolds. , 2013, Chemical communications.

[61]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[62]  Michal Sabat,et al.  Diversity Space and Its Application to Library Selection and Design , 2006, J. Chem. Inf. Model..

[63]  Sarah R. Langdon,et al.  Scaffold Diversity of Exemplified Medicinal Chemistry Space , 2011, J. Chem. Inf. Model..

[64]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[65]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[66]  Heejun Kim,et al.  Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces. , 2014, Journal of the American Chemical Society.

[67]  Christopher R. Corbeil,et al.  Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go , 2008, British journal of pharmacology.

[68]  A. Cieplak STEREOCHEMISTRY OF NUCLEOPHILIC ADDITION TO CYCLOHEXANONE. THE IMPORTANCE OF TWO-ELECTRON STABILIZING INTERACTIONS , 1981 .

[69]  Thomas A. Halgren Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[70]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .