Review of recent developments in amorphous oxide semiconductor thin-film transistor devices

Abstract The present article is a review of the recent progress and major trends in the field of thin-film transistor (TFT) research involving the use of amorphous oxide semiconductors (AOS). First, an overview is provided on how electrical performance may be enhanced by the adoption of specific device structures and process schemes, the combination of various oxide semiconductor materials, and the appropriate selection of gate dielectrics and electrode metals in contact with the semiconductor. As metal oxide TFT devices are excellent candidates for switching or driving transistors in next generation active matrix liquid crystal displays (AMLCD) or active matrix organic light emitting diode (AMOLED) displays, the major parameters of interest in the electrical characteristics involve the field effect mobility (μFE), threshold voltage (Vth), and subthreshold swing (SS). A study of the stability of amorphous oxide TFT devices is presented next. Switching or driving transistors in AMLCD or AMOLED displays inevitably involves voltage bias or constant current stress upon prolonged operation, and in this regard many research groups have examined and proposed device degradation mechanisms under various stress conditions. The most recent studies involve stress experiments in the presence of visible light irradiating the semiconductor, and different degradation mechanisms have been proposed with respect to photon radiation. The last part of this review consists of a description of methods other than conventional vacuum deposition techniques regarding the formation of oxide semiconductor films, along with some potential application fields including flexible displays and information storage.

[1]  R. Street Thin‐Film Transistors , 2009 .

[2]  U. Chung,et al.  Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress , 2010 .

[3]  Joonsuk Park,et al.  Photo and thermal stability enhancement of amorphous Hf–In–Zn–O thin-film transistors by the modulation of back channel composition , 2011 .

[4]  M. Kanatzidis,et al.  High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. , 2010, Journal of the American Chemical Society.

[5]  Doo-Hyoung Lee,et al.  Inkjet-Printed High Mobility Transparent–Oxide Semiconductors , 2009, Journal of Display Technology.

[6]  Changjung Kim,et al.  Highly Stable Transparent Amorphous Oxide Semiconductor Thin‐Film Transistors Having Double‐Stacked Active Layers , 2010, Advanced materials.

[7]  Young-soo Park,et al.  Characteristics and Cleaning of Dry-Etching-Damaged Layer of Amorphous Oxide Thin-Film Transistor , 2009 .

[8]  Yu-Jen Chang,et al.  A General Route to Printable High‐Mobility Transparent Amorphous Oxide Semiconductors , 2007 .

[9]  Doo-Hyoung Lee,et al.  Inkjet printed high-mobility indium zinc tin oxide thin film transistors , 2009 .

[10]  G. Dewey,et al.  High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications , 2008, 2008 IEEE International Electron Devices Meeting.

[11]  T. Kamiya,et al.  Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping* , 2009, Journal of Display Technology.

[12]  Hong-Gyu Kim,et al.  Oxide TFT with multilayer gate insulator for backplane of AMOLED device , 2008 .

[13]  Jae Kyeong Jeong,et al.  Investigation of Light-Induced Bias Instability in Hf-In-Zn-O Thin Film Transistors: A Cation Combinatorial Approach , 2011 .

[14]  H. Hosono,et al.  Fast Thin-Film Transistor Circuits Based on Amorphous Oxide Semiconductor , 2007, IEEE Electron Device Letters.

[15]  Noriaki Ikeda,et al.  Amorphous oxide TFT and their applications in electrophoretic displays , 2008 .

[16]  T. W. Noh,et al.  Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures , 2009 .

[17]  Jae Kyeong Jeong,et al.  Improvement in the Performance of Tin Oxide Thin-Film Transistors by Alumina Doping , 2009 .

[18]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[19]  Chensha Li,et al.  ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film , 2007 .

[20]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[21]  D. Keszler,et al.  Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. , 2008, Journal of the American Chemical Society.

[22]  Jang-Yeon Kwon,et al.  The impact of gate dielectric materials on the light-induced bias instability in Hf–In–Zn–O thin film transistor , 2010 .

[23]  Jin-seong Park,et al.  Atomic Layer Deposition ZnO:N Thin Film Transistor: The Effects of N Concentration on the Device Properties , 2010 .

[24]  Sang Yeol Lee,et al.  High-Performance a-IGZO TFT With $\hbox{ZrO}_{2}$ Gate Dielectric Fabricated at Room Temperature , 2010, IEEE Electron Device Letters.

[25]  C. Moon Discharge characteristics of a plasma display using vertical auxiliary electrodes , 2008 .

[26]  Yeon-Gon Mo,et al.  High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper , 2007 .

[27]  Pedro Barquinha,et al.  The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs , 2008 .

[28]  Joonki Suh,et al.  The influence of sputtering power and O2/Ar flow ratio on the performance and stability of Hf–In–Zn–O thin film transistors under illumination , 2010 .

[29]  Eunha Lee,et al.  Ti/Cu bilayer electrodes for SiNx-passivated Hf–In–Zn–O thin film transistors: Device performance and contact resistance , 2010 .

[30]  Yasutaka Takahashi,et al.  Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition , 2001 .

[31]  R. McLean,et al.  Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering , 2003 .

[32]  Hideo Hosono,et al.  Amorphous Sn–Ga–Zn–O channel thin‐film transistors , 2008 .

[33]  Ya-hui Yang,et al.  Chemical and Electrical Properties of Low-Temperature Solution-Processed In–Ga–Zn-O Thin-Film Transistors , 2010, IEEE Electron Device Letters.

[34]  Jae Kyeong Jeong,et al.  Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors , 2011 .

[35]  Jae Kyeong Jeong The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays , 2011 .

[36]  T. Kamiya,et al.  Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs , 2008 .

[37]  Byung Du Ahn,et al.  Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors , 2008 .

[38]  Huaxiang Yin,et al.  Double gate GaInZnO thin film transistors , 2008 .

[39]  R. B. M. Cross,et al.  Investigating the stability of zinc oxide thin film transistors , 2006 .

[40]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[41]  Sangyoon Lee,et al.  High-Performance and Stable Transparent Hf–In–Zn–O Thin-Film Transistors With a Double-Etch-Stopper Layer , 2010, IEEE Electron Device Letters.

[42]  Dan Zhao,et al.  Solution-Processed Indium Zinc Oxide Transparent Thin Film Transistors , 2007 .

[43]  J. E. Jacobs,et al.  ZnO field-effect transistor , 1968 .

[44]  B. Ryu,et al.  O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors , 2010, 1006.4913.

[45]  M. Powell,et al.  Charge trapping instabilities in amorphous silicon‐silicon nitride thin‐film transistors , 1983 .

[46]  Hyun-Soo Kim,et al.  High Performance Solution-Processed and Lithographically Patterned Zinc–Tin Oxide Thin-Film Transistors with Good Operational Stability , 2009 .

[47]  Kee-Won Kwon,et al.  Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors , 2008 .

[48]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[49]  U-In Chung,et al.  Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors , 2009 .

[50]  Young-soo Park,et al.  Low‐Temperature‐Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High‐Density Non‐volatile Memory , 2009 .

[51]  Sung Kyu Park,et al.  ZnO Thin-Film Transistor Ring Oscillators with 31-ns Propagation Delay , 2008, IEEE Electron Device Letters.

[52]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[53]  Randy Hoffman,et al.  High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer , 2005 .

[54]  Liang Fang,et al.  Transparent flexible resistive random access memory fabricated at room temperature , 2009 .

[55]  Sang-Hee Ko Park,et al.  Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors , 2009 .

[56]  Jin-seong Park,et al.  The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors , 2009 .

[57]  Min Hyuk Choi,et al.  Transparent Flexible Circuits Based on Amorphous-Indium–Gallium–Zinc–Oxide Thin-Film Transistors , 2011, IEEE Electron Device Letters.

[58]  Jang-Yeon Kwon,et al.  The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors , 2009 .

[59]  Hideo Hosono,et al.  Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system , 2007 .

[60]  Jang-Yeon Kwon,et al.  The Impact of Device Configuration on the Photon-Enhanced Negative Bias Thermal Instability of GaInZnO Thin Film Transistors , 2010 .

[61]  Sung-Min Yoon,et al.  Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor , 2010 .

[62]  Sheng-Yao Huang,et al.  Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory , 2010 .

[63]  Jang-Yeon Kwon,et al.  Influence of Illumination on the Negative-Bias Stability of Transparent Hafnium–Indium–Zinc Oxide Thin-Film Transistors , 2010, IEEE Electron Device Letters.

[64]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[65]  Jin-seong Park,et al.  The impact of SiNx gate insulators on amorphous indium-gallium-zinc oxide thin film transistors under bias-temperature-illumination stress , 2010 .

[66]  Ji Sim Jung,et al.  Threshold Voltage Control of Amorphous Gallium Indium Zinc Oxide TFTs by Suppressing Back-Channel Current , 2009 .

[67]  J. J. Jeon,et al.  Solution-Processed, High Performance Aluminum Indium Oxide Thin-Film Transistors Fabricated at Low Temperature , 2009 .

[68]  Yeon-Gon Mo,et al.  Impact of high-k TiOx dielectric on device performance of indium-gallium-zinc oxide transistors , 2009 .

[69]  Jungbae Kim,et al.  High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator , 2008 .

[70]  Randy Hoffman,et al.  High-performance flexible zinc tin oxide field-effect transistors , 2005 .

[71]  Douglas A. Keszler,et al.  Spin-coated zinc oxide transparent transistors , 2003 .

[72]  Hai-Jung In,et al.  External Compensation of Nonuniform Electrical Characteristics of Thin-Film Transistors and Degradation of OLED Devices in AMOLED Displays , 2009, IEEE Electron Device Letters.

[73]  Joonsuk Park,et al.  The influence of SiOx and SiNx passivation on the negative bias stability of Hf-In-Zn-O thin film transistors under illumination , 2010 .

[74]  Hyuck-In Kwon,et al.  Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors , 2008 .

[75]  John F. Muth,et al.  Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors , 2008 .

[76]  Henrique L. Gomes,et al.  Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field‐Effect Transistors , 2007 .

[77]  A. Chin,et al.  High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric , 2009, IEEE Electron Device Letters.

[78]  Yeon-Gon Mo,et al.  Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment , 2007 .

[79]  Huaxiang Yin,et al.  Program/Erase Characteristics of Amorphous Gallium Indium Zinc Oxide Nonvolatile Memory , 2008, IEEE Transactions on Electron Devices.

[80]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[81]  C. J. Kim,et al.  Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor’s channel layer , 2008 .

[82]  Hyun Jae Kim,et al.  Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors , 2009 .

[83]  Hideo Hosono,et al.  Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor , 2009 .

[84]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[85]  Satoshi Masuda,et al.  Transparent thin film transistors using ZnO as an active channel layer and their electrical properties , 2003 .

[86]  Jung Woo Kim,et al.  Bottom-Gate Gallium Indium Zinc Oxide Thin-Film Transistor Array for High-Resolution AMOLED Display , 2008, IEEE Electron Device Letters.

[87]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[88]  Chi-Sun Hwang,et al.  High performance thin film transistor with cosputtered amorphous Zn-In-Sn-O channel: Combinatorial approach , 2009 .

[89]  Chang Jung Kim,et al.  High Reliable and Manufacturable Gallium Indium Zinc Oxide Thin-Film Transistors Using the Double Layers as an Active Layer , 2009 .

[90]  Sang Yoon Lee,et al.  Solution‐processed oxide semiconductors for low‐cost and high‐performance thin‐film transistors and fabrication of organic light‐emitting‐diode displays , 2010 .

[91]  Ping Liu,et al.  High-performance semiconducting polythiophenes for organic thin-film transistors. , 2004, Journal of the American Chemical Society.

[92]  Y.-J. Chang,et al.  High-Performance, Spin-Coated Zinc Tin Oxide Thin-Film Transistors , 2007 .

[93]  U-In Chung,et al.  Persistent photoconductivity in Hf–In–Zn–O thin film transistors , 2010 .

[94]  Yong-Young Noh,et al.  Ink-jet printed ZnO nanowire field effect transistors , 2007 .

[95]  Jerzy Kanicki,et al.  Bias‐stress‐induced stretched‐exponential time dependence of charge injection and trapping in amorphous thin‐film transistors , 1993 .

[96]  T. Kamiya,et al.  Present status of amorphous In–Ga–Zn–O thin-film transistors , 2010, Science and technology of advanced materials.

[97]  Sung-Min Yoon,et al.  Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor , 2011 .

[98]  Manabu Ito,et al.  Invited Paper Special Section on Electronic Displays " Front Drive " Display Structure for Color Electronic Paper Using Fully Transparent Amorphous Oxide Tft Array , 2022 .

[99]  E. Fortunato,et al.  Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .

[100]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[101]  Hua-Chi Cheng,et al.  Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method , 2006 .

[102]  Jun Li,et al.  High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature , 2009 .

[103]  Yeon-Gon Mo,et al.  High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel , 2007 .

[104]  A. Chin,et al.  A Nonvolatile InGaZnO Charge-Trapping-Engineered Flash Memory With Good Retention Characteristics , 2010, IEEE Electron Device Letters.

[105]  Hideo Hosono,et al.  Material characteristics and applications of transparent amorphous oxide semiconductors , 2010 .

[106]  Sung-Min Yoon,et al.  Oxide-Thin-Film-Transistor-Based Ferroelectric Memory Array , 2011, IEEE Electron Device Letters.

[107]  Jin-seong Park,et al.  The Impact of Passivation Layers on the Negative Bias Temperature Illumination Instability of Ha-In-Zn-O TFT , 2011 .