Ultrasensitive detection of force and displacement using trapped ions.

The ability to detect extremely small forces and nanoscale displacements is vital for disciplines such as precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN Hz(-1/2) (refs 6,7) through coupling of nanomechanical resonators to a variety of physical readout systems. Here, we demonstrate that crystals of trapped atomic ions behave as nanoscale mechanical oscillators and may form the core of exquisitely sensitive force and displacement detectors. We report the detection of forces with a sensitivity of 390 +/- 150 yN Hz(-1/2), which is more than three orders of magnitude better than existing reports using nanofabricated devices(7), and discriminate ion displacements of approximately 18 nm. Our technique is based on the excitation of tunable normal motional modes in an ion trap and detection through phase-coherent Doppler velocimetry, and should ultimately allow force detection with a sensitivity better than 1 yN Hz(-1/2) (ref. 16). Trapped-ion-based sensors could enable scientists to explore new regimes in materials science where augmented force, field and displacement sensitivity may be traded against reduced spatial resolution.

[1]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[2]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[3]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[4]  W. Itano,et al.  Doppler imaging of plasma modes in a Penning trap. , 1998, Optics express.

[5]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[6]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[7]  K. Højbjerre,et al.  Sympathetically-Cooled Single Ion Mass Spectrometry , 2009 .

[8]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[9]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[10]  U. Mohideen,et al.  Precision Measurement of the Casimir Force from 0.1 to 0.9 μm , 1998, physics/9805038.

[11]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[12]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[13]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[14]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[15]  A. Volokitin,et al.  Theory of friction: the contribution from a fluctuating electromagnetic field , 1999 .

[16]  Wineland,et al.  Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  L. Deslauriers Zero-point cooling and low heating of trapped ^1^1^1Cd^+ ions (5 pages) , 2004 .

[18]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[19]  Wolfgang Hansel,et al.  Trapped-ion probing of light-induced charging effects on dielectrics , 2010, 1004.4842.

[20]  Nondestructive identification of cold and extremely localized single molecular ions. , 2004, Physical review letters.

[21]  Baughman,et al.  Direct observations of structural phase transitions in planar crystallized ion plasmas , 1998, Science.

[22]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[23]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[24]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[25]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[26]  Michael J. Biercuk,et al.  High-fidelity quantum control using ion crystals in a penning trap , 2009, Quantum Inf. Comput..

[27]  D. J. Larson,et al.  Static properties of a non-neutral Be-9(+)-ion plasma , 1988 .

[28]  Gerd Leuchs,et al.  Stylus ion trap for enhanced access and sensing , 2009 .

[29]  J. Bollinger,et al.  Rapid heating of a strongly coupled plasma near the solid-liquid phase transition. , 2005, Physical review letters.

[30]  John J. Bollinger,et al.  Phase-Locked Rotation of Crystallized Non-neutral Plasmas by Rotating Electric Fields , 1998 .