fficiency of bulk-heterojunction organic solar cells

During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device eywords:

[1]  Adam J. Moulé,et al.  An optical spacer is no panacea for light collection in organic solar cells , 2009 .

[2]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[3]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[4]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[5]  J. Durrant,et al.  Insights from Transient Optoelectronic Analyses on the Open-Circuit Voltage of Organic Solar Cells. , 2012, The journal of physical chemistry letters.

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[7]  W. Vervisch,et al.  Photo-electrical characterizations of plastic solar modules , 2012 .

[8]  J. C. de Mello,et al.  Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell , 2008 .

[9]  A. Furube,et al.  Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM , 2009 .

[10]  O. Inganäs,et al.  Charge Transfer States in Organic Donor-Acceptor Solar Cells , 2011 .

[11]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[12]  Sean E. Shaheen,et al.  Pathways to a New Efficiency Regime for Organic Solar Cells , 2012 .

[13]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[14]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[15]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[16]  W. Ruppel,et al.  Upper limit for the conversion of solar energy , 1980, IEEE Transactions on Electron Devices.

[17]  K. Taretto,et al.  Electro-optical modeling of bulk heterojunction solar cells , 2008 .

[18]  D. L. King,et al.  Solar cell efficiency tables (version 28) , 2006 .

[19]  R. T. Ross Thermodynamic Limitations on the Conversion of Radiant Energy into Work , 1966 .

[20]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[21]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[22]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[23]  Thomas Kirchartz,et al.  Efficiency Limits of Organic Bulk Heterojunction Solar Cells , 2009 .

[24]  J. Bolton,et al.  Requirements for ideal performance of photochemical and photovoltaic solar energy converters , 1990 .

[25]  Thuc‐Quyen Nguyen,et al.  A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells , 2008 .

[26]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[27]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[28]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[29]  Mark A. Ratner,et al.  Practical efficiency limits in organic photovoltaic cells: Functional dependence of fill factor and external quantum efficiency , 2009 .

[30]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[31]  M. Stutzmann,et al.  Thermodynamic Efficiency Limit of Molecular Donor‐Acceptor Solar Cells and its Application to Diindenoperylene/C60‐Based Planar Heterojunction Devices , 2012 .

[32]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[33]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[34]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[35]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .

[36]  Ben Minnaert,et al.  Efficiency potential of organic bulk heterojunction solar cells , 2007 .

[37]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[38]  F. Krebs,et al.  Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance , 2012 .

[39]  Christoph J. Brabec,et al.  The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells , 2008 .

[40]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[41]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[42]  Isaac Kauvar,et al.  The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells , 2012 .

[43]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[44]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[45]  Xiaoniu Yang,et al.  Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control , 2007 .

[46]  James Kirkpatrick,et al.  Factors limiting the efficiency of molecular photovoltaic devices , 2004 .

[47]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[48]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[49]  Ole Hagemann,et al.  Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb , 2011 .

[50]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[51]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[52]  Eugene A. Katz,et al.  Open-circuit voltage of organic photovoltaics: Implications of the generalized Einstein relation for disordered semiconductors , 2012 .

[53]  W. You,et al.  Rational Design of High Performance Conjugated Polymers for Organic Solar Cells , 2012 .

[54]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[55]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[56]  Mauro Morana,et al.  Exciton diffusion length in narrow bandgap polymers , 2012 .

[57]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[58]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[59]  Martin A. Green,et al.  Solar cell efficiency tables (Version 31) , 2008 .

[60]  Tom Markvart,et al.  Thermodynamics and reciprocity of solar energy conversion , 2002 .

[61]  A. Walker,et al.  Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. , 2005, Nano letters.

[62]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[63]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[64]  M. Toney,et al.  Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells , 2012 .

[65]  Martin A. Green,et al.  Accuracy of analytical expressions for solar cell fill factors , 1982 .

[66]  A. Kahn,et al.  Photovoltaic efficiency limits and material disorder , 2012 .

[67]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[68]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.