F‐actin‐like filaments formed by plasmid segregation protein ParM

It was the general belief that DNA partitioning in prokaryotes is independent of a cytoskeletal structure, which in eukaryotic cells is indispensable for DNA segregation. Recently, however, immunofluorescence microscopy revealed highly dynamic, filamentous structures along the longitudinal axis of Escherichia coli formed by ParM, a plasmid‐encoded protein required for accurate segregation of low‐copy‐number plasmid R1. We show here that ParM polymerizes into double helical protofilaments with a longitudinal repeat similar to filamentous actin (F‐actin) and MreB filaments that maintain the cell shape of non‐spherical bacteria. The crystal structure of ParM with and without ADP demonstrates that it is a member of the actin family of proteins and shows a domain movement of 25° upon nucleotide binding. Furthermore, the crystal structure of ParM reveals major differences in the protofilament interface compared with F‐actin, despite the similar arrangement of the subunits within the filaments. Thus, there is now evidence for cytoskeletal structures, formed by actin‐like filaments that are involved in plasmid partitioning in E.coli.

[1]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[2]  L. Amos,et al.  Tubulin‐like protofilaments in Ca2+‐induced FtsZ sheets , 1999, The EMBO journal.

[3]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[4]  P Bork,et al.  An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Marie-France Carlier,et al.  Mechanism of Actin-Based Motility , 2001, Science.

[6]  J. Lutkenhaus,et al.  FtsZ‐spirals and ‐arcs determine the shape of the invaginating septa in some mutants of Escherichia coli , 1996, Molecular microbiology.

[7]  Edward H. Egelman,et al.  A New Internal Mode in F-Actin Helps Explain the Remarkable Evolutionary Conservation of Actin's Sequence and Structure , 2002, Current Biology.

[8]  S. Molin,et al.  Stable inheritance of plasmid R1 requires two different loci , 1985, Journal of bacteriology.

[9]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[10]  W. Kabsch,et al.  The actin fold , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  L. Amos,et al.  Bacterial ancestry of actin and tubulin. , 2001, Current opinion in microbiology.

[12]  L. Amos,et al.  Crystal structure of the bacterial cell-division protein FtsZ , 1998, Nature.

[13]  T. Pollard,et al.  Crystal Structure of Arp2/3 Complex , 2001, Science.

[14]  T. Ogura,et al.  Partition mechanism of F plasmid: Two plasmid gene-encoded products and a cis-acting region are involved in partition , 1983, Cell.

[15]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[16]  X. Chen,et al.  Yeast actin with a mutation in the "hydrophobic plug" between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect , 1993, The Journal of cell biology.

[17]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[18]  H. Yoshikawa,et al.  Genes and their organization in the replication origin region of the bacterial chromosome , 1992, Molecular microbiology.

[19]  J. Gober,et al.  Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus , 1997, Cell.

[20]  R A Crowther,et al.  MRC image processing programs. , 1996, Journal of structural biology.

[21]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[22]  R. Heald Motor Function in the Mitotic Spindle Minireview , 2000, Cell.

[23]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[24]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[25]  R. B. Jensen,et al.  Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. , 1997, Journal of molecular biology.

[26]  Edward H. Egelman,et al.  How does ATP hydrolysis control actin's associations? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P A de Boer,et al.  Bacterial cell division. , 1990, Annual review of genetics.

[28]  R. B. Jensen,et al.  Plasmid and chromosome partitioning: surprises from phylogeny , 2000, Molecular microbiology.

[29]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[30]  W. Kabsch,et al.  Atomic structure of the actin: DNase I complex , 1990, Nature.

[31]  A. Wright,et al.  DNA segregation in bacteria. , 2000, Annual review of microbiology.

[32]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[33]  R. B. Jensen,et al.  Chromosome segregation during the prokaryotic cell division cycle. , 1999, Current opinion in cell biology.

[34]  K. Gerdes,et al.  Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. , 1994, Journal of molecular biology.

[35]  E V Koonin,et al.  A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. , 1993, Journal of molecular biology.

[36]  E. Egelman,et al.  A change in actin conformation associated with filament instability after Pi release. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Grossman,et al.  spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis , 1994, Journal of bacteriology.

[38]  Jan Löwe,et al.  Crystal structure of the cell division protein FtsA from Thermotoga maritima , 2000, The EMBO journal.

[39]  A. Abeles,et al.  Partition of unit-copy miniplasmids to daughter cells. I. P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. , 1983, Journal of molecular biology.

[40]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.

[41]  L. Otterbein,et al.  The Crystal Structure of Uncomplexed Actin in the ADP State , 2001, Science.

[42]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[43]  R. B. Jensen,et al.  Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  H. Niki,et al.  Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. , 1998, Genes & development.

[45]  R. B. Jensen,et al.  Plasmid and chromosome segregation in prokaryotes. , 2000, Trends in microbiology.

[46]  E. Egelman Molecular evolution: Actin's long lost relative found , 2001, Current Biology.

[47]  W. Kabsch,et al.  Atomic model of the actin filament , 1990, Nature.

[48]  R. Heald Motor function in the mitotic spindle. , 2000, Cell.

[49]  L. Rothfield,et al.  Bacterial cell division. , 1999, Annual Review of Genetics.

[50]  S. Molin,et al.  Partitioning of plasmid R1. Structural and functional analysis of the parA locus. , 1986, Journal of molecular biology.

[51]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.

[52]  F. Hartl,et al.  Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. , 1998, Trends in biochemical sciences.

[53]  R. B. Jensen,et al.  Prokaryotic DNA segregation by an actin‐like filament , 2002, The EMBO journal.

[54]  C. Schutt,et al.  The structure of crystalline profilin–β-actin , 1993, Nature.

[55]  H. Berendsen,et al.  Model‐free methods of analyzing domain motions in proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation of lysozyme , 1997, Proteins.

[56]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[57]  M. Way,et al.  Surfing pathogens and the lessons learned for actin polymerization. , 2001, Trends in cell biology.

[58]  J. Errington,et al.  Upheaval in the bacterial nucleoid. An active chromosome segregation mechanism. , 1999, Trends in Genetics.

[59]  H. Erickson,et al.  Atomic structures of tubulin and FtsZ. , 1998, Trends in cell biology.

[60]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[61]  Jan Löwe,et al.  Prokaryotic origin of the actin cytoskeleton , 2001, Nature.