Data rate theorem for stabilization over fading channels ( Invited Paper )

In this paper, we present a data rate theorem for stabilization of a linear, discrete-time, unstable dynamical system with arbitrarily large disturbances, over a noiseless communication channel with time-varying rates. Necessary and sufficient conditions for stabilization are derived, their implications and relationships with related results in the literature are discussed.

[1]  B. Sinopoli,et al.  Foundations of Control and Estimation Over Lossy Networks , 2007, Proceedings of the IEEE.

[2]  Panos J. Antsaklis,et al.  Control and Communication Challenges in Networked Real-Time Systems , 2007, Proceedings of the IEEE.

[3]  F. Fagnani,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[4]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.

[5]  D. Shen,et al.  Fundamentals of Wireless Communications , 2006 .

[6]  Munther A. Dahleh,et al.  Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.

[7]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[8]  Andrey V. Savkin,et al.  Comments on "Control over noisy channels" and relevant negative results , 2005, IEEE Trans. Autom. Control..

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[11]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[12]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[13]  Michael I. Jordan,et al.  Kalman filtering with intermittent observations , 2003, IEEE Transactions on Automatic Control.

[14]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[15]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[16]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[20]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[21]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .