Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk

Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque (n = 38), with plaques <2.0 mm thick (n = 65), and with plaques ≥2.0 mm (n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence (n = 31) or presence (n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques.

[1]  D. Mozaffarian,et al.  Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association , 2017, Circulation.

[2]  M. Fornage,et al.  Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association , 2017, Circulation.

[3]  S. Shrivastava,et al.  Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. , 2016, Biochimica et biophysica acta.

[4]  A. Hoes,et al.  2016 European Guidelines on cardiovascular disease prevention in clinical practice. , 2016, Revista espanola de cardiologia.

[5]  T. Kooistra,et al.  Resolvin E1 attenuates atherosclerosis in absence of cholesterol-lowering effects and on top of atorvastatin. , 2016, Atherosclerosis.

[6]  N. Salem,et al.  Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. , 2016, Progress in lipid research.

[7]  K. Borow,et al.  Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. , 2015, Atherosclerosis.

[8]  M. Lagarde,et al.  Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis. , 2015, Biochimica et biophysica acta.

[9]  Bernadette A. Thomas,et al.  Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 , 2015, The Lancet.

[10]  A. Sannino,et al.  Non-invasive vulnerable plaque imaging: how do we know that treatment works? , 2014, European heart journal cardiovascular Imaging.

[11]  Stephen S. Lim,et al.  Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys , 2014, BMJ : British Medical Journal.

[12]  K. Nasir,et al.  Omega-3 Fatty Acid Blood Levels: Clinical Significance and Controversy , 2013, Circulation.

[13]  P. Calder The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. , 2012, Molecular nutrition & food research.

[14]  R. Erasmus,et al.  Gas Chromatography Results Interpretation: Absolute Amounts Versus Relative Percentages , 2012 .

[15]  R. Lamuela-Raventós,et al.  Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. , 2011, The British journal of nutrition.

[16]  M. Pencina,et al.  Carotid-wall intima-media thickness and cardiovascular events. , 2011, The New England journal of medicine.

[17]  P. Calder,et al.  Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. , 2010, Atherosclerosis.

[18]  A. Zampelas Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. , 2010, Atherosclerosis.

[19]  W. Harris,et al.  Biological variability of blood omega-3 biomarkers. , 2010, Clinical biochemistry.

[20]  Dolores Corella,et al.  Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain , 2010, British Journal of Nutrition.

[21]  W. Harris The omega-3 index: From biomarker to risk marker to risk factor , 2009, Current atherosclerosis reports.

[22]  G. Boysen European Guidelines on Cardiovascular Disease Prevention , 2009, International journal of stroke : official journal of the International Stroke Society.

[23]  C. Brotons,et al.  Prevalencia, distribución y variabilidad geográfica de los principales factores de riesgo cardiovascular en España. Análisis agrupado de datos individuales de estudios epidemiológicos poblacionales: estudio ERICE , 2008 .

[24]  B. Fielding,et al.  Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. , 2008, Progress in lipid research.

[25]  M. Grau,et al.  Análisis de la tendencia en la letalidad, incidencia y mortalidad por infarto de miocardio en Girona entre 1990 y 1999 , 2007 .

[26]  Y. Matsuzawa,et al.  Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis , 2007, The Lancet.

[27]  O. Simonetti,et al.  Multislice dark‐blood carotid artery wall imaging: A 1.5 T and 3.0 T comparison , 2006, Journal of magnetic resonance imaging : JMRI.

[28]  E. Ros,et al.  Influence of HDL Cholesterol on Preclinical Carotid Atherosclerosis in Familial Hypercholesterolemia , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[29]  C. Yuan,et al.  Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[30]  E. Ros,et al.  Preclinical coronary atherosclerosis in a population with low incidence of myocardial infarction: cross sectional autopsy study , 2003, BMJ : British Medical Journal.

[31]  R. Elosua,et al.  Prevalence of angina pectoris in Spain , 1999, European Journal of Epidemiology.

[32]  W C Willett,et al.  Adjustment for total energy intake in epidemiologic studies. , 1997, The American journal of clinical nutrition.

[33]  D. Corella,et al.  COHORT PROFILE Cohort Profile : Design and methods of the PREDIMED study , 2012 .

[34]  J. Banegas,et al.  Prevalence, geographic distribution and geographic variability of major cardiovascular risk factors in Spain. Pooled analysis of data from population-based epidemiological studies: the ERICE Study. , 2008, Revista espanola de cardiologia.

[35]  J. Marrugat,et al.  [Analysis of trends in myocardial infarction case-fatality, incidence and mortality rates in Girona, Spain, 1990-1999]. , 2007, Revista espanola de cardiologia.

[36]  Alan D. Lopez,et al.  The Global Burden of Disease Study , 2003 .

[37]  A. Castro‐Beiras,et al.  Prevalence of angina pectoris in Spain. PANES Study group. , 1999, European journal of epidemiology.