Synthesis of metalla-dual-azulenes with fluoride ion recognition properties.

[1]  Aisha N. Bismillah,et al.  Rupturing aromaticity by periphery overcrowding , 2023, Nature Chemistry.

[2]  Ming Luo,et al.  Unique Properties and Emerging Applications of Carbolong Metallaaromatics. , 2023, Accounts of chemical research.

[3]  Li-Ping Zhong,et al.  Asymmetric Total Synthesis of Twin Bufogargarizins A and B. , 2023, Journal of the American Chemical Society.

[4]  Xike Gao,et al.  Azulene-Embedded [n]Helicenes (n = 5, 6 and 7). , 2022, Angewandte Chemie.

[5]  Ka Ruan,et al.  Ring contraction of metallacyclobutadiene to metallacyclopropene driven by π- and σ-aromaticity relay , 2022, Nature Synthesis.

[6]  Xin Zhang,et al.  Modulating the Frontier Orbitals of an Aluminylene for Facile Dearomatization of Inert Arenes. , 2021, Angewandte Chemie.

[7]  Takahiro Suzuki,et al.  Synthesis of Seven-Membered Cross-Conjugated Cyclic Trienes by 8π Electrocyclic Reaction. , 2021, Organic letters.

[8]  H. Xia,et al.  Releasing Antiaromaticity in Metal-Bridgehead Naphthalene. , 2021, Journal of the American Chemical Society.

[9]  Shengfa Ye,et al.  Metalla-aromatics: Planar, Nonplanar, and Spiro. , 2021, Accounts of chemical research.

[10]  Xike Gao,et al.  Azulene-Based π-Functional Materials: Design, Synthesis, and Applications. , 2021, Accounts of chemical research.

[11]  H. Xia,et al.  Metallaaromatic Chemistry: History and Development. , 2020, Chemical reviews.

[12]  C. Pignedoli,et al.  On-Surface Synthesis of Non-benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. , 2020, Journal of the American Chemical Society.

[13]  Guangwu Li,et al.  Formation of Azulene-embedded Nanographene via Unusual Naphthalene to Azulene Rearrangement During Scholl Reaction. , 2020, Angewandte Chemie.

[14]  Weiping Tang,et al.  Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks. , 2019, Accounts of chemical research.

[15]  S. Aldridge,et al.  Reversible, room-temperature C-C bond activation of benzene by an isolable metal complex. , 2019, Journal of the American Chemical Society.

[16]  Deqing Zhang,et al.  Light-Driven Reversible Intermolecular Proton Transfer at Single-Molecule Junctions. , 2019, Angewandte Chemie.

[17]  Shenghua Liu,et al.  A Visible-Light-Induced Strategy To Construct Osmanaphthalynes, Osmaanthracyne, and Osmaphenanthryne. , 2018, Chemistry.

[18]  T. V. Nguyen,et al.  Stimuli-Responsive Organic Dyes with Tropylium Chromophore. , 2018, Chemistry.

[19]  H. Xia,et al.  Carbolong Chemistry: A Story of Carbon Chain Ligands and Transition Metals. , 2018, Accounts of chemical research.

[20]  Ang Li,et al.  Total Synthesis of Hybridaphniphylline B. , 2018, Journal of the American Chemical Society.

[21]  Benjamin J. Frogley,et al.  Recent Advances in Metallaaromatic Chemistry. , 2018, Chemistry.

[22]  F. Gabbaï,et al.  Exploiting the Strong Hydrogen Bond Donor Properties of a Borinic Acid Functionality for Fluoride Anion Recognition. , 2018, Angewandte Chemie.

[23]  Cheng-Hang Liu,et al.  Rhodium(I)-Catalyzed Bridged [5+2] Cycloaddition of cis-Allene-vinylcyclopropanes to Synthesize the Bicyclo[4.3.1]decane Skeleton. , 2017, Angewandte Chemie.

[24]  E. Anslyn,et al.  New Autoinductive Cascade for the Optical Sensing of Fluoride: Application in the Detection of Phosphoryl Fluoride Nerve Agents. , 2017, Journal of the American Chemical Society.

[25]  H. Mayr,et al.  Why Are Vinyl Cations Sluggish Electrophiles? , 2017, Journal of the American Chemical Society.

[26]  Benjamin J. Frogley,et al.  A Metallaanthracene and Derived Metallaanthraquinone. , 2017, Angewandte Chemie.

[27]  Y. Yamaguchi,et al.  Terazulene Isomers: Polarity Change of OFETs through Molecular Orbital Distribution Contrast. , 2016, Journal of the American Chemical Society.

[28]  T. Lash Out of the Blue! Azuliporphyrins and Related Carbaporphyrinoid Systems. , 2016, Accounts of chemical research.

[29]  K. Houk,et al.  Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions , 2014, Journal of the American Chemical Society.

[30]  Jun Feng Zhang,et al.  Fluorescence and colorimetric chemosensors for fluoride-ion detection. , 2014, Chemical reviews.

[31]  Weiping Tang,et al.  Transfer of chirality in the rhodium-catalyzed intramolecular [5+2] cycloaddition of 3-acyloxy-1,4-enynes (ACEs) and alkynes: synthesis of enantioenriched bicyclo[5.3.0]decatrienes. , 2013, Angewandte Chemie.

[32]  Jiangxi Chen,et al.  Recent development in the chemistry of transition metal-containing metallabenzenes and metallabenzynes , 2013 .

[33]  P. Schleyer,et al.  Stabilization of anti-aromatic and strained five-membered rings with a transition metal. , 2013, Nature chemistry.

[34]  Jian-jun Yuan,et al.  Novel silver tetrafluoroborate catalyzed electrophilic cascade cyclization reaction: a facile approach to the synthesis of halo-substituted benzo[a]fluorenols. , 2012, Organic letters.

[35]  Jun Li,et al.  Carbon arc production of heptagon-containing fullerene[68] , 2011, Nature communications.

[36]  S. Saha,et al.  Fluoride ion sensing by an anion-π interaction. , 2010, Journal of the American Chemical Society.

[37]  C. Wade,et al.  Fluoride ion complexation and sensing using organoboron compounds. , 2010, Chemical reviews.

[38]  J. Stryker,et al.  Cobalt-mediated eta5-pentadienyl/alkyne [5 + 2] cycloaddition. Synthesis and characterization of unbridged eta2,eta3-coordinated cycloheptadienyl complexes. , 2008, Journal of the American Chemical Society.

[39]  Roger Taylor,et al.  Isolation of Two Seven-Membered Ring C58 Fullerene Derivatives: C58F17CF3 and C58F18 , 2005, Science.

[40]  K. Mereiter,et al.  Isolation of a stable 1-iridabicyclo[3.2.0]hepta-1,3,6-triene and its reversible transformation into an iridacycloheptatriene. , 2004, Journal of the American Chemical Society.

[41]  E. Oñate,et al.  Formation of unusual iridabenzene and metallanaphthalene containing electron-withdrawing substituents. , 2003, Journal of the American Chemical Society.

[42]  Masaaki Yoshida,et al.  Electrophilic substitution reactions of benz[a]indeno[1,2,3-cd]azulene , 1990 .

[43]  K. Hafner,et al.  1,4‐Dipolar Cycloadditions of Cyclopent[cd]azulene , 1976 .

[44]  K. Hafner,et al.  Cycloadditions of Aceheptylene—A Facile Synthesis of Dicyclopenta[ef,kl]heptalenes , 1976 .

[45]  K. Hafner,et al.  Cyclopent[cd]azulene and 1,2‐Dihydrodicyclopent‐[cd,ij]azulene , 1974 .

[46]  K. Hafner,et al.  New Synthesis of Aceheptylene , 1970 .

[47]  K. Hafner Structure and Aromatic Character of Non‐benzenoid Cyclically Conjugated Systems , 1964 .

[48]  K. Hafner,et al.  Darstellung und Eigenschaften von Derivaten des Pentalens und Heptalens , 1959 .

[49]  W. Doering,et al.  The Cycloheptatrienylium (Tropylium) Ion , 1954 .

[50]  邓军,et al.  Total synthesis of the Daphniphyllum alkaloid daphenylline , 2013 .

[51]  J. Bleeke Aromatic iridacycles. , 2007, Accounts of chemical research.

[52]  H. Lindner Crystal and molecular structure of 5,7-dimethyl-2-phenylcyclopent[cd]-azulene , 1970 .