Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für nanorobotische Anwendungen

Piezo-actuated miniaturized Stick-Slip drives (positioners) are well known both in research and industry. The function of the drives can be subdivided into the phase of actuation (Stick) and the retraction of the actuator (Slip). Although the deflection of the actuator is limited, theoretically infinite motion can be realized, combined with high positioning resolution. In this work a new method is investigated and characterized to use Stick-Slip drives not only for positioning purposes, but also for generation of well-defined forces. The method is based on the properties of the Stick-Slip friction, which is signified by the interaction of surface asperities. It allows generation of virtually arbitrary forces. The amount of force is defined by the drive’s preload, the control signal’s amplitude and the Stick-Slip contact conditions. Moreover, the force can be controlled externally using the excitation signal. The method is not in a need of any sensor and thus it inhibits a great application potential. Friction between actuator and output plays a key role for understanding the drive and therefore the force generation process. Friction is a complex matter and can be modeled only approximative with simple models. A new friction model as result of this work is designed in such a way that all relevant parameters including the generated force can be represented. Additionally, some aspects are specially investigated, so the dependency of the forces on material conditions. The process of establishing the model is supported by simulations, which are justified permanently by measurements. Validation is done with focus on two application-oriented scenarios. On the one hand the method is transferred to a robot exhibiting several degrees of freedom to generate arbitrary, vectorial forces in three dimensions. This can be of interest for metrology tasks of complex geometrical structures. On the other hand the generation of notably small forces is aimed for to demonstrate the exploitation of the microand nanoscale.

[1]  C. Heiden,et al.  Simple micropositioning devices for STM , 1987 .

[2]  E. Rabinowicz The Intrinsic Variables affecting the Stick-Slip Process , 1958 .

[3]  Reymond Clavel,et al.  Piezoactuators for motion control from centimeter to nanometer , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[4]  Zhongwei Jiang,et al.  Nonlinear Hysteresis Compensation of Piezoelectric Ceramic Actuators , 1996 .

[5]  Rolf Kumme,et al.  Construction of a standard force machine for the range of 100 μN–200 mN , 2012 .

[6]  Urban Simu,et al.  MICRON: Small Autonomous Robot for Cell Manipulation Applications , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Q. Zhang,et al.  Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces , 2012 .

[8]  Christoph Edeler Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[9]  Bradley J. Nelson,et al.  Vision-based force measurement , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  F. Altpeter Friction modeling, identification and compensation , 1999 .

[11]  S. Stramigioli,et al.  Modeling and simulating the stick–slip motion of the μWalker, a MEMS-based device for μSPAM , 2006 .

[12]  Sergej Fatikow,et al.  Modeling of stick-slip micro-drives , 2011 .

[13]  V. Patoglu,et al.  Development of a Micromanipulation System with Force Sensing , 2007 .

[14]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[15]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[16]  F. Kaegi,et al.  A nanomanipulation platform for semi automated manipulation of nano-sized objects using mobile microrobots inside a Scanning Electron Microscope , 2008 .

[17]  A. Bergander,et al.  Performance improvements for stick-slip positioners , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[18]  F. Elmer Nonlinear dynamics of dry friction , 1997, chao-dyn/9707004.

[19]  E. Rabinowicz The Nature of the Static and Kinetic Coefficients of Friction , 1951 .

[20]  Sylvain Martel,et al.  Fundamentals of piezoceramic actuation for micrometer and submicrometer motions for the NanoWalker robot , 2000, SPIE Optics East.

[21]  Philippe Renaud,et al.  A 4-degrees-of-freedom microrobot with nanometer resolution , 1996, Robotica.

[22]  J. Klafter,et al.  The nonlinear nature of friction , 2004, Nature.

[23]  K. R. Koops,et al.  Observation of zero creep in piezoelectric actuators , 1999 .

[24]  P. Dahl A Solid Friction Model , 1968 .

[25]  F. Heslot,et al.  Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  Sergej Fatikow,et al.  NanoLab: A nanorobotic system for automated pick-and-place handling and characterization of CNTs , 2009, 2009 IEEE International Conference on Robotics and Automation.

[28]  J. Dieterich Time-dependent friction and the mechanics of stick-slip , 1978 .

[29]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[30]  H.N. Koivo,et al.  Simultaneous Actuation and Force Estimation Using Piezoelectric Actuators , 2007, 2007 International Conference on Mechatronics and Automation.

[31]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[32]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: analytical study , 1995, Other Conferences.

[33]  Deok-Ho Kim,et al.  Design and performance evaluation of a 3-DOF mobile microrobot for micromanipulation , 2003 .

[34]  Sergej Fatikow,et al.  Design and Control of a Nanohandling Robot , 2011 .

[35]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[36]  S. Putterman,et al.  Correlation between charge transfer and stick-slip friction at a metal-insulator interface , 2000, Physical review letters.

[37]  Jörg Wallaschek,et al.  Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations , 2001 .

[38]  Ichiro Watanabe,et al.  Digital shaping filters for reducing machine vibration , 1992, IEEE Trans. Robotics Autom..

[39]  Stefen Riebel,et al.  General description of the wireless miniature NanoWalker robot designed for atomic-scale operations , 2001, Optics East.

[40]  U. Jungnickel Miniaturisierte Positioniersysteme mit mehreren Freiheitsgraden auf der Basis monolithischer Strukturen , 2004 .

[41]  Richard Superfine,et al.  Mechanics and Friction at the Nanometer Scale , 2000 .

[42]  Bernhard Gottlieb,et al.  Piezoelektrischer Stellantrieb (PAD) (Piezoelectric Actuator Drive (PAD)) , 2008, Autom..

[43]  Chunsheng Zhao,et al.  Development and application prospects of piezoelectric precision driving technology , 2008 .

[44]  Rodolfo Rabe,et al.  Compact test platform for in-situ indentation and scratching inside a scanning electron microscope (SEM) , 2006 .

[45]  Philippe Lutz,et al.  High-Stroke Motion Modelling and Voltage/Frequency Proportional Control of a Stick-Slip Microsystem , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[46]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[47]  Sergej Fatikow,et al.  Development of automated microrobot-based nanohandling stations for nanocharacterization , 2008 .

[48]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[49]  Sergej Fatikow,et al.  Driving principles of mobile microrobots for micro- and nanohandling , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[50]  Walter Sextro,et al.  Dynamical Contact Problems with Friction , 2002 .

[51]  Tobias Hemsel,et al.  Drive Signals for Maximizing the Velocity of Piezoelectric Inertia Motors , 2010 .

[52]  Valentin L. Popov,et al.  Kontaktmechanik und Reibung , 2010 .

[53]  Mark O. Robbins,et al.  Statistical Mechanics of Static and Low‐Velocity Kinetic Friction , 2003 .

[54]  Khaled Karrai,et al.  Slip-stick step-scanner for scanning probe microscopy , 2005 .

[55]  Bo Jacobson,et al.  The Stribeck memorial lecture , 2003 .

[56]  P. Dupont,et al.  Elasto-plastic friction model: contact compliance and stiction , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[57]  Helge Hülsen,et al.  Self-organising locally interpolating maps in control engineering , 2007 .

[58]  Roland Siegwart,et al.  A robot system for automated handling in micro-world , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[59]  Wolfgang Zesch,et al.  Multi-degree-of-freedom micropositioning using stepping principles , 1997 .

[60]  S. Kleindiek,et al.  Performing probe experiments in the SEM. , 2004, Micron.

[61]  J. C. Piedboeuf Friction and Stick-Slip in Robots : Simulation and Experimentation , 2000 .

[62]  Uwe Brand,et al.  A new facility to realize a nanonewton force standard based on electrostatic methods , 2009 .

[63]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[64]  Hannes Bleuler,et al.  Position feedback for microrobots based on scanning probe microscopy , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[65]  La Hire,et al.  Memoires de mathematique et de physique , 1970 .

[66]  Bergander,et al.  Micropositioners for microscopy applications and microbiology based on piezoelectric actuators , 2002 .

[67]  Christian Stolle Distributed control architecture for automated nanohandling , 2007, ICINCO-ICSO.

[68]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[69]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[70]  Reymond Clavel,et al.  Stick and slip actuators (SSA) , 2000, SPIE Optics East.

[71]  J. Röning,et al.  Probe based manipulation and assembly of nanowires into organized mesostructures , 2008, Nanotechnology.

[72]  Dan O. Popa,et al.  A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.

[73]  Jörg Seyfried,et al.  Flexible microrobots for micro assembly tasks , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[74]  G. Mariotto,et al.  DYNAMIC BEHAVIOR OF A PIEZOWALKER, INERTIAL AND FRICTIONAL CONFIGURATIONS , 1999 .

[75]  Micky Rakotondrabe,et al.  Force control in piezoelectric microactuators using self scheduled H technique , 2010 .

[76]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[77]  Yu Xie,et al.  An adaptive impedance force control approach for robotic cell microinjection , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[78]  Josep Samitier,et al.  From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.

[79]  Walter Driesen,et al.  Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle , 2008 .

[80]  M. Kurosawa,et al.  A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[81]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[82]  H. Blok,et al.  The dissipation of frictional heat , 1955 .

[83]  Martyn C. Davies,et al.  Comparison of calibration methods for atomic-force microscopy cantilevers , 2002 .

[84]  A. Sabanovic,et al.  Sliding-mode based force control of a piezoelectric actuator , 2004, Proceedings of the IEEE International Conference on Mechatronics, 2004. ICM '04..

[85]  Persson Theory and simulation of sliding friction. , 1993, Physical review letters.

[86]  A CONSTITUTIVE MODEL FOR STRAIN-RATE DEPENDENT DUCTILE-TO-BRITTLE TRANSITION , 2006 .

[87]  Sergej Fatikow,et al.  High-speed nanorobot position control inside a scanning electron microscope , 2010, ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[88]  Sergej Fatikow,et al.  Development, Control and Evaluation of a Mobile Platform for Microrobots , 2008 .

[89]  E. Rabinowicz,et al.  Friction and Wear of Self-Lubricating Metallic Materials , 1975 .

[90]  K. K.,et al.  Stick-slip vibrations and chaos , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[91]  G. Caprari Autonomous Micro-Robots: Applications and Limitations , 2003 .

[92]  G. Gautschi Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers , 2002 .

[93]  C. Coulomb Théorie des machines simples (Nouv. éd.) / , en ayant égard au frottement de leurs parties et à la roideur des cordages, par C.-A. Coulomb,... Nouvelle édition... , 1821 .

[94]  Peter C. Y. Chen,et al.  Force Sensing and Control in Micromanipulation , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[95]  Daniel Jasper,et al.  Laser-Based Structuring of Piezoceramics for Mobile Microrobots , 2009 .

[96]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: two novel mechanisms , 1995, Other Conferences.

[97]  Jim Woodhouse,et al.  Stick–slip motion in the atomic force microscope , 1998 .

[98]  Volker Klocke,et al.  DESIGN NOTE: In situ nanomanipulation system for electrical measurements in SEM , 2007 .

[99]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[100]  Yong Peng,et al.  Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. , 2009, Nano letters.

[101]  David Tabor,et al.  The Seizure of Metals , 1949 .

[102]  D. Jasper,et al.  Towards automated robotic nanomanipulation systems , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[103]  Daniel Jasper,et al.  SEM-based motion control for automated robotic nanohandling , 2011 .

[104]  Sergej Fatikow,et al.  Simulation and Measurements of Stick-Slip-Microdrives for Nanorobots , 2010 .

[105]  Sergej Fatikow,et al.  Open Loop Force Control of Piezo-Actuated Stick-Slip Drives , 2011, Int. J. Intell. Mechatronics Robotics.

[106]  Christoph Edeler Measurements and Potential Applications of Force-Control Method for Stick-Slip-Driven Nanohandling Robots , 2011 .

[107]  Takeshi Morita,et al.  Miniature piezoelectric motors , 2003 .

[108]  F. P. Bowden,et al.  The friction of solids at very high speeds I. Metal on metal; II. Metal on diamond , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[109]  Fathi H. Ghorbel,et al.  Nanoscale Friction Dynamic Modeling , 2009 .

[110]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[111]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[112]  Sergej Fatikow,et al.  Automatic nanohandling station inside a scanning electron microscope , 2008 .