Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für nanorobotische Anwendungen
暂无分享,去创建一个
[1] C. Heiden,et al. Simple micropositioning devices for STM , 1987 .
[2] E. Rabinowicz. The Intrinsic Variables affecting the Stick-Slip Process , 1958 .
[3] Reymond Clavel,et al. Piezoactuators for motion control from centimeter to nanometer , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).
[4] Zhongwei Jiang,et al. Nonlinear Hysteresis Compensation of Piezoelectric Ceramic Actuators , 1996 .
[5] Rolf Kumme,et al. Construction of a standard force machine for the range of 100 μN–200 mN , 2012 .
[6] Urban Simu,et al. MICRON: Small Autonomous Robot for Cell Manipulation Applications , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
[7] Q. Zhang,et al. Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces , 2012 .
[8] Christoph Edeler. Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot , 2008, 2008 IEEE International Conference on Robotics and Automation.
[9] Bradley J. Nelson,et al. Vision-based force measurement , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10] F. Altpeter. Friction modeling, identification and compensation , 1999 .
[11] S. Stramigioli,et al. Modeling and simulating the stick–slip motion of the μWalker, a MEMS-based device for μSPAM , 2006 .
[12] Sergej Fatikow,et al. Modeling of stick-slip micro-drives , 2011 .
[13] V. Patoglu,et al. Development of a Micromanipulation System with Force Sensing , 2007 .
[14] P. Hansma,et al. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .
[15] Reinder Banning,et al. Modeling piezoelectric actuators , 2000 .
[16] F. Kaegi,et al. A nanomanipulation platform for semi automated manipulation of nano-sized objects using mobile microrobots inside a Scanning Electron Microscope , 2008 .
[17] A. Bergander,et al. Performance improvements for stick-slip positioners , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).
[18] F. Elmer. Nonlinear dynamics of dry friction , 1997, chao-dyn/9707004.
[19] E. Rabinowicz. The Nature of the Static and Kinetic Coefficients of Friction , 1951 .
[20] Sylvain Martel,et al. Fundamentals of piezoceramic actuation for micrometer and submicrometer motions for the NanoWalker robot , 2000, SPIE Optics East.
[21] Philippe Renaud,et al. A 4-degrees-of-freedom microrobot with nanometer resolution , 1996, Robotica.
[22] J. Klafter,et al. The nonlinear nature of friction , 2004, Nature.
[23] K. R. Koops,et al. Observation of zero creep in piezoelectric actuators , 1999 .
[24] P. Dahl. A Solid Friction Model , 1968 .
[25] F. Heslot,et al. Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[26] J. Greenwood,et al. Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[27] Sergej Fatikow,et al. NanoLab: A nanorobotic system for automated pick-and-place handling and characterization of CNTs , 2009, 2009 IEEE International Conference on Robotics and Automation.
[28] J. Dieterich. Time-dependent friction and the mechanics of stick-slip , 1978 .
[29] Warren P. Seering,et al. Preshaping Command Inputs to Reduce System Vibration , 1990 .
[30] H.N. Koivo,et al. Simultaneous Actuation and Force Estimation Using Piezoelectric Actuators , 2007, 2007 International Conference on Mechatronics and Automation.
[31] Gerber,et al. Atomic Force Microscope , 2020, Definitions.
[32] Wolfgang Zesch,et al. Inertial drives for micro- and nanorobots: analytical study , 1995, Other Conferences.
[33] Deok-Ho Kim,et al. Design and performance evaluation of a 3-DOF mobile microrobot for micromanipulation , 2003 .
[34] Sergej Fatikow,et al. Design and Control of a Nanohandling Robot , 2011 .
[35] G. Pharr,et al. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .
[36] S. Putterman,et al. Correlation between charge transfer and stick-slip friction at a metal-insulator interface , 2000, Physical review letters.
[37] Jörg Wallaschek,et al. Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations , 2001 .
[38] Ichiro Watanabe,et al. Digital shaping filters for reducing machine vibration , 1992, IEEE Trans. Robotics Autom..
[39] Stefen Riebel,et al. General description of the wireless miniature NanoWalker robot designed for atomic-scale operations , 2001, Optics East.
[40] U. Jungnickel. Miniaturisierte Positioniersysteme mit mehreren Freiheitsgraden auf der Basis monolithischer Strukturen , 2004 .
[41] Richard Superfine,et al. Mechanics and Friction at the Nanometer Scale , 2000 .
[42] Bernhard Gottlieb,et al. Piezoelektrischer Stellantrieb (PAD) (Piezoelectric Actuator Drive (PAD)) , 2008, Autom..
[43] Chunsheng Zhao,et al. Development and application prospects of piezoelectric precision driving technology , 2008 .
[44] Rodolfo Rabe,et al. Compact test platform for in-situ indentation and scratching inside a scanning electron microscope (SEM) , 2006 .
[45] Philippe Lutz,et al. High-Stroke Motion Modelling and Voltage/Frequency Proportional Control of a Stick-Slip Microsystem , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.
[46] D. Pohl. Dynamic piezoelectric translation devices , 1987 .
[47] Sergej Fatikow,et al. Development of automated microrobot-based nanohandling stations for nanocharacterization , 2008 .
[48] Robert Mundt. Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .
[49] Sergej Fatikow,et al. Driving principles of mobile microrobots for micro- and nanohandling , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).
[50] Walter Sextro,et al. Dynamical Contact Problems with Friction , 2002 .
[51] Tobias Hemsel,et al. Drive Signals for Maximizing the Velocity of Piezoelectric Inertia Motors , 2010 .
[52] Valentin L. Popov,et al. Kontaktmechanik und Reibung , 2010 .
[53] Mark O. Robbins,et al. Statistical Mechanics of Static and Low‐Velocity Kinetic Friction , 2003 .
[54] Khaled Karrai,et al. Slip-stick step-scanner for scanning probe microscopy , 2005 .
[55] Bo Jacobson,et al. The Stribeck memorial lecture , 2003 .
[56] P. Dupont,et al. Elasto-plastic friction model: contact compliance and stiction , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[57] Helge Hülsen,et al. Self-organising locally interpolating maps in control engineering , 2007 .
[58] Roland Siegwart,et al. A robot system for automated handling in micro-world , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.
[59] Wolfgang Zesch,et al. Multi-degree-of-freedom micropositioning using stepping principles , 1997 .
[60] S. Kleindiek,et al. Performing probe experiments in the SEM. , 2004, Micron.
[61] J. C. Piedboeuf. Friction and Stick-Slip in Robots : Simulation and Experimentation , 2000 .
[62] Uwe Brand,et al. A new facility to realize a nanonewton force standard based on electrostatic methods , 2009 .
[63] U. Landman,et al. Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.
[64] Hannes Bleuler,et al. Position feedback for microrobots based on scanning probe microscopy , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).
[65] La Hire,et al. Memoires de mathematique et de physique , 1970 .
[66] Bergander,et al. Micropositioners for microscopy applications and microbiology based on piezoelectric actuators , 2002 .
[67] Christian Stolle. Distributed control architecture for automated nanohandling , 2007, ICINCO-ICSO.
[68] Carlos Canudas de Wit,et al. Friction Models and Friction Compensation , 1998, Eur. J. Control.
[69] Carlos Canudas de Wit,et al. A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..
[70] Reymond Clavel,et al. Stick and slip actuators (SSA) , 2000, SPIE Optics East.
[71] J. Röning,et al. Probe based manipulation and assembly of nanowires into organized mesostructures , 2008, Nanotechnology.
[72] Dan O. Popa,et al. A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.
[73] Jörg Seyfried,et al. Flexible microrobots for micro assembly tasks , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).
[74] G. Mariotto,et al. DYNAMIC BEHAVIOR OF A PIEZOWALKER, INERTIAL AND FRICTIONAL CONFIGURATIONS , 1999 .
[75] Micky Rakotondrabe,et al. Force control in piezoelectric microactuators using self scheduled H technique , 2010 .
[76] Vincent Hayward,et al. Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..
[77] Yu Xie,et al. An adaptive impedance force control approach for robotic cell microinjection , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[78] Josep Samitier,et al. From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.
[79] Walter Driesen,et al. Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle , 2008 .
[80] M. Kurosawa,et al. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[81] Carlos Canudas de Wit,et al. A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..
[82] H. Blok,et al. The dissipation of frictional heat , 1955 .
[83] Martyn C. Davies,et al. Comparison of calibration methods for atomic-force microscopy cantilevers , 2002 .
[84] A. Sabanovic,et al. Sliding-mode based force control of a piezoelectric actuator , 2004, Proceedings of the IEEE International Conference on Mechatronics, 2004. ICM '04..
[85] Persson. Theory and simulation of sliding friction. , 1993, Physical review letters.
[86] A CONSTITUTIVE MODEL FOR STRAIN-RATE DEPENDENT DUCTILE-TO-BRITTLE TRANSITION , 2006 .
[87] Sergej Fatikow,et al. High-speed nanorobot position control inside a scanning electron microscope , 2010, ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.
[88] Sergej Fatikow,et al. Development, Control and Evaluation of a Mobile Platform for Microrobots , 2008 .
[89] E. Rabinowicz,et al. Friction and Wear of Self-Lubricating Metallic Materials , 1975 .
[90] K. K.,et al. Stick-slip vibrations and chaos , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[91] G. Caprari. Autonomous Micro-Robots: Applications and Limitations , 2003 .
[92] G. Gautschi. Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers , 2002 .
[93] C. Coulomb. Théorie des machines simples (Nouv. éd.) / , en ayant égard au frottement de leurs parties et à la roideur des cordages, par C.-A. Coulomb,... Nouvelle édition... , 1821 .
[94] Peter C. Y. Chen,et al. Force Sensing and Control in Micromanipulation , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[95] Daniel Jasper,et al. Laser-Based Structuring of Piezoceramics for Mobile Microrobots , 2009 .
[96] Wolfgang Zesch,et al. Inertial drives for micro- and nanorobots: two novel mechanisms , 1995, Other Conferences.
[97] Jim Woodhouse,et al. Stick–slip motion in the atomic force microscope , 1998 .
[98] Volker Klocke,et al. DESIGN NOTE: In situ nanomanipulation system for electrical measurements in SEM , 2007 .
[99] K. Kendall,et al. Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[100] Yong Peng,et al. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. , 2009, Nano letters.
[101] David Tabor,et al. The Seizure of Metals , 1949 .
[102] D. Jasper,et al. Towards automated robotic nanomanipulation systems , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[103] Daniel Jasper,et al. SEM-based motion control for automated robotic nanohandling , 2011 .
[104] Sergej Fatikow,et al. Simulation and Measurements of Stick-Slip-Microdrives for Nanorobots , 2010 .
[105] Sergej Fatikow,et al. Open Loop Force Control of Piezo-Actuated Stick-Slip Drives , 2011, Int. J. Intell. Mechatronics Robotics.
[106] Christoph Edeler. Measurements and Potential Applications of Force-Control Method for Stick-Slip-Driven Nanohandling Robots , 2011 .
[107] Takeshi Morita,et al. Miniature piezoelectric motors , 2003 .
[108] F. P. Bowden,et al. The friction of solids at very high speeds I. Metal on metal; II. Metal on diamond , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[109] Fathi H. Ghorbel,et al. Nanoscale Friction Dynamic Modeling , 2009 .
[110] Raymond D. Mindlin,et al. Compliance of elastic bodies in contact , 1949 .
[111] F. P. Bowden,et al. The Friction and Lubrication of Solids , 1964 .
[112] Sergej Fatikow,et al. Automatic nanohandling station inside a scanning electron microscope , 2008 .