Disentangling the impact of Atlantic Niño on sea-air CO2 flux

[1]  A. Olsen,et al.  Early detection of anthropogenic climate change signals in the ocean interior , 2023, Scientific Reports.

[2]  W. Cai,et al.  Suppressed Atlantic Niño/Niña variability under greenhouse warming , 2022, Nature Climate Change.

[3]  L. Bopp,et al.  Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario , 2022, Earth System Dynamics.

[4]  T. Fichefet,et al.  Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinea Coast rainfall , 2022, Earth System Dynamics.

[5]  N. Keenlyside,et al.  Weakening of the Atlantic Niño variability under global warming , 2022, Nature Climate Change.

[6]  C. Heinze,et al.  Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations , 2020 .

[7]  I. Richter,et al.  An overview of the performance of CMIP6 models in the tropical Atlantic: mean state, variability, and remote impacts , 2020, Climate Dynamics.

[8]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[9]  A. Ito,et al.  Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks , 2020, Geoscientific Model Development.

[10]  G. Laruelle,et al.  A uniform pCO2 climatology combining open and coastal oceans , 2020, Earth System Science Data.

[11]  M. Latif,et al.  Weakened SST variability in the tropical Atlantic Ocean since 2000 , 2020, Climate Dynamics.

[12]  C. Heinze,et al.  Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2) , 2020, Geoscientific Model Development.

[13]  Siyu Li,et al.  Parallel Comparison of Major Sudden Stratospheric Warming Events in CESM1-WACCM and CESM2-WACCM , 2019, Atmosphere.

[14]  A. Lazar,et al.  Is the boreal spring tropical Atlantic variability a precursor of the Equatorial Mode? , 2019, Climate Dynamics.

[15]  H. Tsujino,et al.  The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component , 2019, Journal of the Meteorological Society of Japan. Ser. II.

[16]  N. Keenlyside,et al.  Role of wind stress in driving SST biases in the Tropical Atlantic , 2019, Climate Dynamics.

[17]  A. Voldoire,et al.  How Does the Seasonal Cycle Control Equatorial Atlantic Interannual Variability? , 2019, Geophysical Research Letters.

[18]  N. Keenlyside,et al.  The role of sea surface temperature in the atmospheric seasonal cycle of the equatorial Atlantic , 2018, Climate Dynamics.

[19]  N. Keenlyside,et al.  Equatorial Atlantic variability—Modes, mechanisms, and global teleconnections , 2018 .

[20]  U. Schneider,et al.  The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. , 2018, Atmosphere.

[21]  J. Servain,et al.  Amazon Plume Salinity Response to Ocean Teleconnections , 2017, Front. Mar. Sci..

[22]  N. Lefèvre,et al.  Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010 , 2017, Scientific Reports.

[23]  M. Mcphaden,et al.  Symmetry of the Atlantic Niño mode , 2017 .

[24]  P. Landschützer,et al.  Decadal variations and trends of the global ocean carbon sink , 2016 .

[25]  Sylvain Watelet,et al.  A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2 , 2016 .

[26]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[27]  G. Caniaux,et al.  Increased CO2 outgassing in February‐May 2010 in the tropical Atlantic following the 2009 Pacific El Niño , 2013 .

[28]  M. Mcphaden,et al.  TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products , 2013, Climate Dynamics.

[29]  H. Sasaki,et al.  Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean , 2012, Nature Geoscience.

[30]  R. Zeebe History of Seawater Carbonate Chemistry, Atmospheric CO 2 , and Ocean Acidification , 2012 .

[31]  H. Giordani,et al.  Diagnosing vertical motion in the Equatorial Atlantic , 2011 .

[32]  S. Xie,et al.  On the origin of equatorial Atlantic biases in coupled general circulation models , 2008 .

[33]  Kerry A. Emanuel,et al.  Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis , 2007 .

[34]  M. Levasseur,et al.  Ocean Biogeochemical Dynamics , 2007 .

[35]  F. Millero The marine inorganic carbon cycle. , 2007, Chemical reviews.

[36]  R. Feely,et al.  Decadal variability of the air‐sea CO2 fluxes in the equatorial Pacific Ocean , 2006 .

[37]  R. Feely,et al.  Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation , 1999, Nature.

[38]  F. Jin,et al.  Tropical Ocean-Atmosphere Interaction, the Pacific Cold Tongue, and the El Niño-Southern Oscillation , 1996, Science.

[39]  R. Feely,et al.  Physical and Biological Controls on Carbon Cycling in the Equatorial Pacific , 1994, Science.

[40]  Taro Takahashi,et al.  Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study , 1993 .

[41]  H. Giordani,et al.  Equatorial upper‐ocean dynamics and their interaction with the West African monsoon , 2009 .