Xentrivalpeptides A-Q: depsipeptide diversification in Xenorhabdus.

Seventeen depsipeptides, xentrivalpeptides A-Q (1-17), have been identified from an entomopathogenic Xenorhabdus sp. Whereas the structure of xentrivalpeptide A (1) was determined after its isolation by NMR spectroscopy and the advanced Marfey's method, the structures of all other derivatives were determined using a combination of stable isotope labeling and detailed MS analysis.

[1]  H. Bode Entomopathogenic bacteria as a source of secondary metabolites. , 2009, Current opinion in chemical biology.

[2]  H. Goodrich-Blair,et al.  Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination , 2007, Molecular microbiology.

[3]  R. ffrench-Constant,et al.  Insecticidal toxins from the bacterium Photorhabdus luminescens. , 1998, Science.

[4]  H. Bode,et al.  Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. , 2012, Chemistry.

[5]  J. Imhoff,et al.  Szentiamide, an N-formylated Cyclic Depsipeptide from Xenorhabdus szentirmaii DSM 16338T , 2011, Natural product communications.

[6]  J. Imhoff,et al.  Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. , 2008, Journal of natural products.

[7]  D. Clarke,et al.  The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. , 2011, Advances in applied microbiology.

[8]  W. Richardson,et al.  Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens , 1988, Applied and environmental microbiology.

[9]  D. Clarke,et al.  Photorhabdus and a host of hosts. , 2009, Annual review of microbiology.

[10]  R. Firn,et al.  Natural products--a simple model to explain chemical diversity. , 2003, Natural product reports.

[11]  H. Bode,et al.  Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum , 2012, Beilstein journal of organic chemistry.

[12]  H. Goodrich-Blair,et al.  Friend and foe: the two faces of Xenorhabdus nematophila , 2007, Nature Reviews Microbiology.

[13]  H. Jenke-Kodama,et al.  A Type II Polyketide Synthase is Responsible for Anthraquinone Biosynthesis in Photorhabdus luminescens , 2007, ChemBioChem.

[14]  R. Müller,et al.  Cytotoxic Fatty Acid Amides from Xenorhabdus , 2011, Chembiochem : a European journal of chemical biology.

[15]  C. Walsh,et al.  NRPS Substrate Promiscuity Diversifies the Xenematides , 2011, Organic letters.

[16]  R. ffrench-Constant,et al.  Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. , 2007, Toxicon : official journal of the International Society on Toxinology.

[17]  K. Harada,et al.  A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Combination of Marfey's Method with Mass Spectrometry and Its Practical Application , 1997 .

[18]  C. Walsh,et al.  Structural insights into nonribosomal peptide enzymatic assembly lines. , 2009, Natural product reports.

[19]  M. Marahiel,et al.  Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. , 2005, Chemical reviews.

[20]  A. Aumelas,et al.  Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila , 2009, The Journal of Antibiotics.

[21]  H. Bode,et al.  Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii. , 2006, Journal of natural products.

[22]  Robert Finking,et al.  Biosynthesis of nonribosomal peptides , 2003 .

[23]  H. Bode,et al.  Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila , 2009, Molecular microbiology.

[24]  Michael Karas,et al.  Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. , 2011, Organic & biomolecular chemistry.