Finite-size effects on periodic arrays of nanostructures

Arrays of nanostructures have emerged as exceptional tools for the manipulation and control of light. Oftentimes, despite the fact that real implementations of nanostructure arrays must be finite, these systems are modeled as perfectly periodic, and therefore infinite. Here, we investigate the legitimacy of this approximation by studying the evolution of the optical response of finite arrays of nanostructures as their number of elements is increased. We find that the number of elements necessary to reach the infinite array limit is determined by the strength of the coupling between them, and that, even when that limit is reached, the individual responses of the elements may still display significant variations. In addition, we show that, when retardation is negligible, the resonance frequency for the infinite array is always redshifted compared to the single particle. However, in the opposite situation, there could be either a blue- or a redshift. We also study the effects of inhomogeneity in size and position of the elements on the optical response of the array. This work advances the understanding of the behavior of finite and infinite arrays of nanostructures, and therefore provides guidance to design applications that utilize these systems.

[1]  V. Kravets,et al.  Plasmonic Surface Lattice Resonances: A Review of Properties and Applications , 2018, Chemical reviews.

[2]  S. Baur,et al.  Hybridization of Lattice Resonances. , 2018, ACS nano.

[3]  Aaro I. Väkeväinen,et al.  The rich photonic world of plasmonic nanoparticle arrays , 2017 .

[4]  J. R. M. Saavedra,et al.  Analytical Modeling of Graphene Plasmons , 2017, 1805.02121.

[5]  A. Manjavacas,et al.  Spatially Resolved Optical Sensing Using Graphene Nanodisk Arrays , 2017 .

[6]  A. Moilanen,et al.  Coupled dipole approximation across the Γ-point in a finite-sized nanoparticle array , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Effect of periodicity in the light scattering from infinite and finite arrays of silver nanospheres , 2017, 2017 IEEE International Conference on Computational Electromagnetics (ICCEM).

[8]  Andrew J. Wilson,et al.  Super-Resolution Imaging and Plasmonics. , 2017, Chemical reviews.

[9]  A. Mosk,et al.  Finite-size Scaling of the Density of States in Photonic Band Gap Crystals. , 2017, Physical review letters.

[10]  Janne Ruostekoski,et al.  Many-Body Subradiant Excitations in Metamaterial Arrays: Experiment and Theory. , 2016, Physical review letters.

[11]  A. Moilanen,et al.  Lasing in dark and bright modes of a finite-sized plasmonic lattice , 2016, Nature Communications.

[12]  A. Koenderink,et al.  Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances. , 2016, ACS nano.

[13]  W. Barnes,et al.  Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers , 2016 .

[14]  Peter Nordlander,et al.  High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. , 2016, ACS nano.

[15]  A. Koenderink,et al.  Statistics of Randomized Plasmonic Lattice Lasers , 2015 .

[16]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[17]  Dominik F. Floess,et al.  Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength. , 2015, Nano letters.

[18]  Teri W. Odom,et al.  Breakthroughs in Photonics 2014: Advances in Plasmonic Nanolasers , 2015, IEEE Photonics Journal.

[19]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[20]  A. Femius Koenderink,et al.  Lasing at the band edges of plasmonic lattices , 2014, 1409.7293.

[21]  W. Barnes,et al.  Plasmonic surface lattice resonances on arrays of different lattice symmetry , 2014 .

[22]  Y. Kivshar,et al.  Second-harmonic generation in subwavelength graphene waveguides , 2014, 1408.0555.

[23]  G. Lozano,et al.  Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices. , 2014, Nanoscale.

[24]  Romain Quidant,et al.  Nanoplasmonics for chemistry. , 2014, Chemical Society reviews.

[25]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[26]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[27]  A. Femius Koenderink,et al.  Diffractive stacks of metamaterial lattices with a complex unit cell : Self-consistent long-range bianisotropic interactions in experiment and theory , 2014 .

[28]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[29]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[30]  Shunsuke Murai,et al.  Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources , 2013, Light: Science & Applications.

[31]  A. Degiron,et al.  Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles , 2012 .

[32]  N. Zheludev,et al.  Electron-beam-driven collective-mode metamaterial light source. , 2012, Physical review letters.

[33]  A. Berrier,et al.  Collective resonances in plasmonic crystals: Size matters , 2012, 1305.3134.

[34]  J. Ruostekoski,et al.  Resonance linewidth and inhomogeneous broadening in a metamaterial array , 2012, 1209.6154.

[35]  D. Thourhout,et al.  Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light , 2012, 1305.3135.

[36]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[37]  S. Thongrattanasiri,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[38]  Y. Kivshar,et al.  Subwavelength plasmonic kinks in arrays of metallic nanoparticles. , 2012, Optics express.

[39]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[40]  W. Marsden I and J , 2012 .

[41]  A. Nosich,et al.  Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires. , 2011, Optics express.

[42]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[43]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[44]  J. Rivas,et al.  Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. , 2010, Physical review letters.

[45]  W. Barnes,et al.  Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate , 2010, 1007.4428.

[46]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[47]  D P Tsai,et al.  Spectral collapse in ensembles of metamolecules. , 2009, Physical review letters.

[48]  Filippo Capolino,et al.  Theory and Phenomena of Metamaterials , 2009 .

[49]  W. Barnes,et al.  Diffractive coupling in gold nanoparticle arrays and the effect of disorder. , 2009, Optics letters.

[50]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[51]  Nikolay I. Zheludev,et al.  Coherent and incoherent metamaterials and order-disorder transitions , 2008, 0809.2361.

[52]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[53]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[54]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[55]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[56]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[57]  E. M. Hicks,et al.  Nanoparticle Spectroscopy: Plasmon Coupling in Finite-Sized Two-Dimensional Arrays of Cylindrical Silver Nanoparticles , 2008 .

[58]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[59]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[60]  S. Tretyakov,et al.  Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres , 2006, physics/0608149.

[61]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[62]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[63]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[64]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .