A Bayesian Approach to Model Checking Biological Systems

Recently, there has been considerable interest in the use of Model Checking for Systems Biology. Unfortunately, the state space of stochastic biological models is often too large for classical Model Checking techniques. For these models, a statistical approach to Model Checking has been shown to be an effective alternative. Extending our earlier work, we present the first algorithm for performing statistical Model Checking using Bayesian Sequential Hypothesis Testing. We show that our Bayesian approach outperforms current statistical Model Checking techniques, which rely on tests from Classical (aka Frequentist) statistics, by requiring fewer system simulations. Another advantage of our approach is the ability to incorporate prior Biological knowledge about the model being verified. We demonstrate our algorithm on a variety of models from the Systems Biology literature and show that it enables faster verification than state-of-the-art techniques, even when no prior knowledge is available.

[1]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[2]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[3]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[4]  François Fages,et al.  Symbolic Model Checking of Biochemical Networks , 2003, CMSB.

[5]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.

[6]  H. Kitano,et al.  A quantitative characterization of the yeast heterotrimeric G protein cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Frank Ciesinski,et al.  On Probabilistic Computation Tree Logic , 2004, Validation of Stochastic Systems.

[8]  Erwin Engeler,et al.  Logic of Programs, Workshop , 1981 .

[9]  Alberto Policriti,et al.  Model building and model checking for biochemical processes , 2007, Cell Biochemistry and Biophysics.

[10]  M. Degroot,et al.  Bayesian Statistics 2. , 1987 .

[11]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[12]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[13]  Stephan Merz,et al.  Model Checking , 2000 .

[14]  L. M. M.-T. Theory of Probability , 1929, Nature.

[15]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[16]  Luca Cardelli,et al.  Abstract Machines of Systems Biology , 2005, Trans. Comp. Sys. Biology.

[17]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[18]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Andrea Omicini,et al.  Transactions on Computational Systems Biology III , 2005, Trans. Computational Systems Biology.

[20]  Christel Baier,et al.  Symbolic Model Checking for Probabilistic Processes , 1997, ICALP.

[21]  D. E. Barton,et al.  The Elements of Stochastic Processes with Applications to the Natural Sciences , 1964 .

[22]  Stephen Gilmore,et al.  Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA , 2006, Trans. Comp. Sys. Biology.

[23]  D. Harel,et al.  Ieee/acm Transactions on Computational Biology and Bioinformatics 1 towards Verified Biological Models , 2022 .

[24]  Bernd Finkbeiner,et al.  Checking Finite Traces using Alternating Automata , 2001, Electron. Notes Theor. Comput. Sci..

[25]  David Gilbert,et al.  Analysis of signalling pathways using the prism model checker , 2005 .

[26]  Mahesh Viswanathan,et al.  On Statistical Model Checking of Stochastic Systems , 2005, CAV.

[27]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[28]  Leslie Lamport,et al.  Proving Liveness Properties of Concurrent Programs , 1982, TOPL.

[29]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[30]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[31]  Paola Lecca,et al.  Cell Cycle Control in Eukaryotes: A BioSpi model , 2007, Electron. Notes Theor. Comput. Sci..

[32]  Axel Legay,et al.  Statistical Model Checking in BioLab: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway , 2008, CMSB.

[33]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[34]  Radu Mateescu,et al.  Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli , 2005, ISMB.

[35]  R. Bechhofer A Note on the Limiting Relative Efficiency of the Wald Sequential Probability Ratio Test , 1960 .

[36]  S. Leibler,et al.  Biological rhythms: Circadian clocks limited by noise , 2000, Nature.

[37]  Thomas Hérault,et al.  Approximate Probabilistic Model Checking , 2004, VMCAI.

[38]  David Harel,et al.  Modeling biological reactivity: statecharts vs. Boolean logic , 2002, AVI '02.

[39]  Christopher J. Langmead,et al.  Generalized Queries and Bayesian Statistical Model Checking in Dynamic Bayesian Networks: Application to Personalized Medicine , 2009 .

[40]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[41]  Radu Grosu,et al.  Monte Carlo Model Checking , 2005, TACAS.

[42]  François Fages Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAM , 2005, LOPSTR.

[43]  David Harel,et al.  Computational insights into Caenorhabditis elegans vulval development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Håkan L. S. Younes,et al.  Statistical probabilistic model checking with a focus on time-bounded properties , 2006, Inf. Comput..

[45]  Christel Baier,et al.  Validation of Stochastic Systems , 2004, Lecture Notes in Computer Science.

[46]  H. McAdams,et al.  Circuit simulation of genetic networks. , 1995, Science.

[47]  Therese Karlsson,et al.  A bayesian approach to model checking , 2008 .

[48]  R. Shanmugam Quantifying Prior Opinion in Length-Biased Linear Mean Natural Exponential Family , 1992 .

[49]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[50]  B. K. Ghosh,et al.  Handbook of sequential analysis , 1991 .

[51]  Marta Z. Kwiatkowska,et al.  PRISM 2.0: a tool for probabilistic model checking , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[52]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[53]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[54]  Håkan L. S. Younes,et al.  Numerical vs. statistical probabilistic model checking , 2006, International Journal on Software Tools for Technology Transfer.

[55]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.