TGFβ signalling in context

[1]  M. Ehlers,et al.  TGF-β Signaling Specifies Axons during Brain Development , 2010, Cell.

[2]  Jeffrey L. Wrana,et al.  Mechanism of activation of the TGF-β receptor , 1994, Nature.

[3]  Paul Tempst,et al.  Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. , 2009, Molecular cell.

[4]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[5]  H. Aburatani,et al.  Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling , 2008, Molecular and Cellular Biology.

[6]  Leonardo Morsut,et al.  FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination , 2009, Cell.

[7]  K. Flanders,et al.  Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. , 2006, Cytokine & growth factor reviews.

[8]  E. Hay,et al.  TGFβ3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex , 2007, Journal of Cell Science.

[9]  G. Sapkota,et al.  Phosphatases in SMAD regulation , 2012, FEBS letters.

[10]  M. Nieto,et al.  The ins and outs of the epithelial to mesenchymal transition in health and disease. , 2011, Annual review of cell and developmental biology.

[11]  W. Kwiatkowski,et al.  The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. , 2003, Molecular cell.

[12]  E. Fuchs,et al.  Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. , 2007, Cancer cell.

[13]  C. Hill,et al.  Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. , 2006, Cytokine & growth factor reviews.

[14]  K. Desai,et al.  Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Jialiang Liang,et al.  A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. , 2010, Cell stem cell.

[16]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[17]  A. Feinberg,et al.  Genome-scale epigenetic reprogramming during epithelial to mesenchymal transition , 2011, Nature Structural &Molecular Biology.

[18]  E. Stanley,et al.  Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1 , 2003, The Journal of cell biology.

[19]  Markus Affolter,et al.  Structural basis of BMP signalling inhibition by the cystine knot protein Noggin , 2002, Nature.

[20]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[21]  Howard Y. Chang,et al.  Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation , 2006, Proceedings of the National Academy of Sciences.

[22]  C. Heldin,et al.  HMGA2 and Smads Co-regulate SNAIL1 Expression during Induction of Epithelial-to-Mesenchymal Transition* , 2008, Journal of Biological Chemistry.

[23]  S. Anderson,et al.  Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation , 2004, Cell.

[24]  W. Talbot,et al.  The EGF-CFC Protein One-Eyed Pinhead Is Essential for Nodal Signaling , 1999, Cell.

[25]  E. Cheung,et al.  Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription , 2006, The EMBO journal.

[26]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[27]  M. Landström,et al.  Non-Smad signaling pathways , 2011, Cell and Tissue Research.

[28]  D. Wotton,et al.  Loss of Tgif Function Causes Holoprosencephaly by Disrupting the Shh Signaling Pathway , 2012, PLoS genetics.

[29]  S. Hatakeyama,et al.  TRIM proteins and cancer , 2011, Nature Reviews Cancer.

[30]  Tomoki Chiba,et al.  Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation* , 2001, The Journal of Biological Chemistry.

[31]  J. Stockman,et al.  Noncanonical TGFβ Signaling Contributes to Aortic Aneurysm Progression in Marfan Syndrome Mice , 2012 .

[32]  Leonardo Morsut,et al.  USP15 is a deubiquitylating enzyme for receptor-activated SMADs , 2011, Nature Cell Biology.

[33]  M. Howell,et al.  Arkadia Activates Smad3/Smad4-Dependent Transcription by Triggering Signal-Induced SnoN Degradation , 2007, Molecular and Cellular Biology.

[34]  Roger R. Gomis,et al.  C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells , 2006 .

[35]  Marie-José Goumans,et al.  Signaling by members of the TGF-beta family in vascular morphogenesis and disease. , 2010, Trends in cell biology.

[36]  J. Wrana,et al.  Coordinating developmental signaling: novel roles for the Hippo pathway. , 2012, Trends in cell biology.

[37]  R. Derynck,et al.  Differentiation plasticity regulated by TGF-|[beta]| family proteins in development and disease , 2007 .

[38]  Yibin Kang,et al.  Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. , 2011, Cancer cell.

[39]  K. Mohammad,et al.  TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. , 2011, Cancer research.

[40]  N. Morrell Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? , 2006, Proceedings of the American Thoracic Society.

[41]  Richard O Hynes,et al.  Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. , 2011, Cancer cell.

[42]  J. Baselga,et al.  USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma , 2012, Nature Medicine.

[43]  Minoru Watanabe,et al.  Smad4 and FAST-1 in the assembly of activin-responsive factor , 1997, Nature.

[44]  A. Brivanlou,et al.  Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-β Pathways* , 2006, Journal of Biological Chemistry.

[45]  E. Robertis,et al.  Integrating Patterning Signals: Wnt/GSK3 Regulates the Duration of the BMP/Smad1 Signal , 2007, Cell.

[46]  R. Crystal,et al.  A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition , 2009, Nature Cell Biology.

[47]  Shyam Prabhakar,et al.  Structure of Smad1 MH1/DNA complex reveals distinctive rearrangements of BMP and TGF-β effectors , 2010, Nucleic acids research.

[48]  Yigong Shi,et al.  Structural Mechanism of Smad4 Recognition by the Nuclear Oncoprotein Ski Insights on Ski-Mediated Repression of TGF-β Signaling , 2002, Cell.

[49]  R. Eils,et al.  Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development , 2011, Proceedings of the National Academy of Sciences.

[50]  Xin-Hua Feng,et al.  Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. , 2009, Developmental cell.

[51]  Leonardo Morsut NEGATIVE CONTROL OF SMAD ACTIVITY PATTERNS THE MAMMALIAN EMBRYO , 2010 .

[52]  Richard A Young,et al.  Control of the Embryonic Stem Cell State , 2011, Cell.

[53]  T. Walz,et al.  Latent TGF-β structure and activation , 2011, Nature.

[54]  Robert I. White,et al.  Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP–HHT syndrome , 2010, American journal of medical genetics. Part A.

[55]  A. Brivanlou,et al.  Balancing BMP signaling through integrated inputs into the Smad1 linker. , 2007, Molecular cell.

[56]  Yigong Shi,et al.  Crystal Structure of a Smad MH1 Domain Bound to DNA Insights on DNA Binding in TGF-β Signaling , 1998, Cell.

[57]  K. Lewis,et al.  Betaglycan binds inhibin and can mediate functional antagonism of activin signalling , 2000, Nature.

[58]  S. Dupont,et al.  Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. , 2011, Molecular cell.

[59]  K. Lewis,et al.  Identification of distinct inhibin and transforming growth factor beta-binding sites on betaglycan: functional separation of betaglycan co-receptor actions. , 2006, The Journal of biological chemistry.

[60]  C. Heldin,et al.  Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition* , 2012, The Journal of Biological Chemistry.

[61]  Shuichi Tsutsumi,et al.  ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif , 2011, Nucleic acids research.

[62]  George Q. Daley,et al.  Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration , 2011, Cell.

[63]  Fang Liu,et al.  Cyclin-dependent kinases regulate the antiproliferative function of Smads , 2004, Nature.

[64]  A. Hinck,et al.  Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. , 2008, Molecular cell.

[65]  Yukio Kondo,et al.  TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia , 2010, Nature.

[66]  D. Rifkin,et al.  Specificity of latent TGF‐β binding protein (LTBP) incorporation into matrix: Role of fibrillins and fibronectin , 2012, Journal of cellular physiology.

[67]  J. Wrana,et al.  Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP‐dependent dendritogenesis , 2004, The EMBO journal.

[68]  Joan W Conaway,et al.  The mammalian Mediator complex and its role in transcriptional regulation. , 2005, Trends in biochemical sciences.

[69]  J. Nichols,et al.  BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3 , 2003, Cell.

[70]  K. Luo,et al.  Negative Feedback Regulation of TGF-β Signaling by the SnoN Oncoprotein , 1999 .

[71]  A. Kicheva,et al.  The Decapentaplegic morphogen gradient: a precise definition. , 2008, Current opinion in cell biology.

[72]  G. Sapkota,et al.  USP11 augments TGFβ signalling by deubiquitylating ALK5 , 2012, Open Biology.

[73]  Yuelei Shen,et al.  TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function , 2008, Nature.

[74]  B. Ozdamar Receptors Controls Epithelial Cell Plasticity Regulation of the Polarity Protein Par6 by TGFß , 2007 .

[75]  P. ten Dijke,et al.  Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter* , 2002, The Journal of Biological Chemistry.

[76]  C. Ouzounis,et al.  Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom , 2009, BMC Evolutionary Biology.

[77]  E. Robertis,et al.  Extracellular regulation of BMP signaling , 2010, Current Biology.

[78]  J. Moffat,et al.  A role for the TGFβ-Par6 polarity pathway in breast cancer progression , 2009, Proceedings of the National Academy of Sciences.

[79]  E. Petty,et al.  A comprehensive review of reported heritable noggin‐associated syndromes and proposed clinical utility of one broadly inclusive diagnostic term: NOG‐related‐symphalangism spectrum disorder (NOG‐SSD) , 2011, Human mutation.

[80]  Takeshi Imamura,et al.  Arkadia amplifies TGF‐β superfamily signalling through degradation of Smad7 , 2003 .

[81]  Li Yang,et al.  TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. , 2010, Trends in immunology.

[82]  D. Patel,et al.  A Poised Chromatin Platform for TGF-β Access to Master Regulators , 2011, Cell.

[83]  Simone Brabletz,et al.  The ZEB/miR‐200 feedback loop—a motor of cellular plasticity in development and cancer? , 2010, EMBO reports.

[84]  Gerald C. Chu,et al.  Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. , 2006, Genes & development.

[85]  Stuart H. Orkin,et al.  Chromatin Connections to Pluripotency and Cellular Reprogramming , 2011, Cell.

[86]  Yibin Kang,et al.  A Self-Enabling TGFβ Response Coupled to Stress Signaling: Smad Engages Stress Response Factor ATF3 for Id1 Repression in Epithelial Cells.: Smad Engages Stress Response Factor ATF3 for Id1 Repression in Epithelial Cells. , 2003 .

[87]  J. Plouhinec,et al.  Systems control of BMP morphogen flow in vertebrate embryos. , 2011, Current opinion in genetics & development.

[88]  D. Marchuk Genetic abnormalities in hereditary hemorrhagic telangiectasia , 1998, Current opinion in hematology.

[89]  Xueyan Duan,et al.  PPM1A Functions as a Smad Phosphatase to Terminate TGFβ Signaling , 2006, Cell.

[90]  L. Attisano,et al.  Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Massagué,et al.  A Smad action turnover switch operated by WW domain readers of a phosphoserine code. , 2011, Genes & development.

[92]  J. Wrana,et al.  Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. , 2000, Molecular cell.

[93]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[94]  U. Hellman,et al.  PARP-1 attenuates Smad-mediated transcription. , 2010, Molecular cell.

[95]  C. Lima,et al.  The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. , 2008, Molecular cell.

[96]  Jeff Porter,et al.  USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor , 2012, Nature Cell Biology.

[97]  J. Massagué How cells read TGF-beta signals. , 2000, Nature reviews. Molecular cell biology.

[98]  J. Massagué,et al.  Smad transcription factors. , 2005, Genes & development.

[99]  J. Massagué,et al.  Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. , 2002, Molecular cell.

[100]  Sho Fujisawa,et al.  Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-β Pathways , 2009, Cell.

[101]  David A. Orlando,et al.  Master Transcription Factors Determine Cell-Type-Specific Responses to TGF-β Signaling , 2011, Cell.

[102]  Dan R. Littman,et al.  Th17 and Regulatory T Cells in Mediating and Restraining Inflammation , 2010, Cell.

[103]  C. Hill Nucleocytoplasmic shuttling of Smad proteins , 2009, Cell Research.

[104]  Lan Xu,et al.  Specific Nucleoporin Requirement for Smad Nuclear Translocation , 2010, Molecular and Cellular Biology.

[105]  David E. Anderson,et al.  OR.41. IL-21 and TGF-β are Required for Differentiation of Human Th17 Cells , 2008 .

[106]  A. Hata,et al.  Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. , 2010, Molecular cell.

[107]  B. Gumbiner,et al.  Cadherin-6B stimulates an epithelial mesenchymal transition and the delamination of cells from the neural ectoderm via LIMK/cofilin mediated non-canonical BMP receptor signaling. , 2012, Developmental biology.

[108]  J. Massagué,et al.  Betaglycan presents ligand to the TGFβ signaling receptor , 1993, Cell.

[109]  Drew N. Robson,et al.  Supplementary Materials for Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion Patterning System , 2012 .

[110]  K. Miyazono,et al.  Autocrine TGF- Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HM , 2009 .

[111]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[112]  J. Massagué,et al.  HER2 silences tumor suppression in breast cancer cells by switching expression of C/EBPß isoforms. , 2010, Cancer research.

[113]  H. Aburatani,et al.  Promoter‐wide analysis of Smad4 binding sites in human epithelial cells , 2009, Cancer science.

[114]  J. Torchia,et al.  TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. , 2012, Molecular cell.

[115]  C. Roberts,et al.  SWI/SNF nucleosome remodellers and cancer , 2011, Nature Reviews Cancer.

[116]  Wei He,et al.  A FoxO–Smad synexpression group in human keratinocytes , 2006, Proceedings of the National Academy of Sciences.

[117]  C. Heldin,et al.  Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. , 2009, Current opinion in cell biology.

[118]  Kai-ping Yan,et al.  Inactivation of TIF1γ Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas , 2009, PLoS genetics.

[119]  Sophia Hsin-Jung Li,et al.  Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast , 2011, Cell.

[120]  David E. Anderson,et al.  IL-21 and TGF-β are required for differentiation of human TH17 cells , 2008, Nature.

[121]  C. Heldin,et al.  The regulation of TGFβ signal transduction , 2009, Development.

[122]  R. Flavell,et al.  TGF-β: A Master of All T Cell Trades , 2008, Cell.

[123]  Alejandra Bruna,et al.  High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. , 2007, Cancer cell.

[124]  K. Hochedlinger,et al.  Tgfβ Signal Inhibition Cooperates in the Induction of iPSCs and Replaces Sox2 and cMyc , 2009, Current Biology.

[125]  Markus Affolter,et al.  The Decapentaplegic morphogen gradient: from pattern formation to growth regulation , 2007, Nature Reviews Genetics.

[126]  Wei He,et al.  Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[127]  David R. Liu,et al.  A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. , 2009, Cell stem cell.

[128]  David García-Dorado,et al.  TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. , 2009, Cancer cell.

[129]  J. Massagué,et al.  E2F4/5 and p107 as Smad Cofactors Linking the TGFβ Receptor to c-myc Repression , 2002, Cell.

[130]  J. Massagué,et al.  The transforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors , 1987, Cell.

[131]  D. Wotton,et al.  Premature Senescence and Increased TGFβ Signaling in the Absence of Tgif1 , 2012, PloS one.

[132]  J. Massagué,et al.  How cells read TGF-β signals , 2000, Nature Reviews Molecular Cell Biology.

[133]  N. Nakano,et al.  Requirement of TCF7L2 for TGF-β-dependent Transcriptional Activation of the TMEPAI Gene* , 2010, The Journal of Biological Chemistry.

[134]  H. Dietz,et al.  Lessons on the pathogenesis of aneurysm from heritable conditions , 2011, Nature.

[135]  M. Kretzschmar,et al.  Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1 , 1997, Nature.

[136]  J. Wrana,et al.  Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. , 2010, Cell stem cell.

[137]  Steven Gallinger,et al.  Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. , 2007, Cancer research.

[138]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[139]  J. Baselga,et al.  TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. , 2010, Cancer cell.

[140]  K. Xia,et al.  Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. , 2010, Genome research.

[141]  J Kuriyan,et al.  The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. , 2001, Molecular cell.

[142]  J. Massagué,et al.  Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. , 1997, Genes & development.

[143]  R. Derynck,et al.  Differentiation plasticity regulated by TGF-β family proteins in development and disease , 2007, Nature Cell Biology.

[144]  Wei He,et al.  Hematopoiesis Controlled by Distinct TIF1γ and Smad4 Branches of the TGFβ Pathway , 2006, Cell.

[145]  C. Heldin,et al.  The DNA Binding Activities of Smad2 and Smad3 Are Regulated by Coactivator-mediated Acetylation* , 2006, Journal of Biological Chemistry.

[146]  J. Massagué,et al.  Genome-wide Impact of the BRG1 SWI/SNF Chromatin Remodeler on the Transforming Growth Factor β Transcriptional Program* , 2008, Journal of Biological Chemistry.

[147]  Roger R. Gomis,et al.  TGFβ Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4 , 2008, Cell.

[148]  J. Baker,et al.  HEB and E2A function as SMAD/FOXH1 cofactors. , 2011, Genes & development.

[149]  J. Massagué,et al.  TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b , 2001, Nature Cell Biology.

[150]  C. Hill,et al.  Tgf-beta superfamily signaling in embryonic development and homeostasis. , 2009, Developmental cell.

[151]  J. Massagué,et al.  OAZ Uses Distinct DNA- and Protein-Binding Zinc Fingers in Separate BMP-Smad and Olf Signaling Pathways , 2000, Cell.