Status of CO 2 isotope lasers and their applications in tunable laser spectroscopy

The use of CO 2 isotopes can provide a manifold expansion of the usable frequency range of sealed-off CO 2 lasers. Determination of the frequency, gain, and saturation parameter of the various CO 2 isotopic laser transitions will be discussed. Design considerations for constructing CO 2 isotopic lasers and selected applications will be presented.

[1]  J. C. Siddoway,et al.  Calculated and Observed Laser Transitions using C14O216 , 1968 .

[2]  B. J. Clifton,et al.  Far‐ir heterodyne radiometric measurements with quasioptical Schottky diode mixers , 1978 .

[3]  Charles Freed,et al.  ERRATA: STANDING WAVE SATURATION RESONANCES IN THE CO2 10.6‐μ TRANSITIONS OBSERVED IN A LOW‐PRESSURE ROOM‐TEMPERATURE ABSORBER GAS , 1970 .

[4]  C. Freed,et al.  Absolute frequencies of lasing transitions in seven CO2isotopic species , 1980, IEEE Journal of Quantum Electronics.

[5]  C. Patel,et al.  Continuous-Wave Laser Action on Vibrational-Rotational Transitions of C O 2 , 1964 .

[6]  Charles Freed,et al.  HgCdTe varactor photodiode detection of cw CO2 laser beats beyond 60 GHz , 1973 .

[7]  R. Carbone Long-term operation of a sealed CO 2 laser , 1967 .

[8]  W. Witteman HIGH‐OUTPUT POWERS AND LONG LIFETIMES OF SEALED‐OFF CO2 LASERS , 1967 .

[9]  D. G. McDonald,et al.  Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption , 1974 .

[10]  W. Witteman Increasing continuous laser-action on CO2 rotational vibrational transitions through selective depopulation of the lower laser level by means of water vapour , 1965 .

[11]  B. W. Jolliffe,et al.  Measurement of the speed of light I. Introduction and frequency measurement of a carbon dioxide laser , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Mixing of 10-μm radiation in room-temperature Schottky diodes , 1981 .

[13]  B. J. Clifton,et al.  Submillimeter detection and mixing using Schottky diodes , 1974 .

[14]  K. Siemsen,et al.  Heterodyne frequency measurements of CO2 laser hot-band transitions , 1977 .

[15]  U. Hochuli,et al.  Cold cathodes for sealed-off CO 2 lasers , 1973 .

[16]  A. Javan,et al.  Sealed multiatmosphere CO2 TEA laser: Seed‐gas compatible system using unheated oxide catalyst , 1978 .

[17]  I. Wieder,et al.  4B11 - Generation of new infrared maser frequencies by isotopic substitution , 1966 .

[18]  Gordon W. Day,et al.  Accurate frequencies of molecular transitions used in laser stabilization: the 3.39‐μm transition in CH4 and the 9.33‐ and 10.18‐μm transitions in CO2 , 1973 .

[19]  B. W. Jolliffe,et al.  Absolute frequencies of the methane-stabilized HeNe laser (3.39μm) and the CO2, R(32) stabilized laser (10.17μm) , 1976 .

[20]  G. Jacobs,et al.  Extension of CO2‐Laser Wavelength Range with Isotopes , 1967 .

[21]  I. Wieder,et al.  ISOTOPE SHIFTS AND THE ROLE OF FERMI RESONANCE IN THE CO$sub 2$ INFRARED MASER , 1966 .

[22]  M. Silver,et al.  Gain Measurements in CO2 Isotope Lasers , 1970 .

[23]  K. Siemens,et al.  Heterodyne frequency measurements of CO2 laser sequence-band transitions , 1977 .

[24]  A. Javan,et al.  Mixed isotope multiatmosphere CO 2 laser , 1979 .

[25]  C. W. Patterson,et al.  Emission frequencies of the CF 4 laser , 1980 .

[26]  B. Whitford Absolute frequencies of CO2 laser transitions by multiplication of CO2 laser difference frequencies , 1979 .

[27]  Charles Freed,et al.  Advances in CO2 Laser Stabilization Using the 4.3 μm Fluorescence Technique , 1977 .

[28]  K. Siemsen,et al.  In‐cavity hot cell for use with sequence CO2 lasers , 1977 .