Time-Delay Interferometry

Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI).This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA) mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

[1]  O. Hellmig,et al.  Space-borne frequency comb metrology , 2016 .

[2]  W. Ni Gravitational wave detection in space , 2016, 1610.01148.

[3]  M. Tinto,et al.  Coherent observations of gravitational radiation with LISA and gLISA , 2016, 1608.04790.

[4]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[5]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[6]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[7]  N. Yu,et al.  Time-delay interferometry with optical frequency comb , 2015, 1502.06651.

[8]  J. Brossard,et al.  Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers , 2013, 1309.1059.

[9]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[10]  Young-Jin Kim,et al.  Testing of a femtosecond pulse laser in outer space , 2014, Scientific Reports.

[11]  K. Danzmann,et al.  First stage of LISA data processing: Clock synchronization and arm-length determination via a hybrid-extended Kalman filter , 2014, 1402.6222.

[12]  K. Danzmann,et al.  Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments , 2013, 1310.2486.

[13]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[14]  S. Babak,et al.  Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space , 2013, 1306.3865.

[15]  O. D. Aguiar,et al.  Searching for gravitational waves with a geostationary interferometer , 2011, 1112.1565.

[16]  K. Danzmann,et al.  TDI and clock noise removal for the split interferometry configuration of LISA , 2012 .

[17]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[18]  Karsten Danzmann,et al.  Experimental demonstration of weak-light laser ranging and data communication for LISA. , 2011, Optics express.

[19]  Yan Wang,et al.  Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication , 2011 .

[20]  Brent Ware,et al.  Progress in interferometry for LISA at JPL , 2011 .

[21]  Kirk McKenzie,et al.  Laser ranging and communications for LISA. , 2010, Optics express.

[22]  Johanna L. Miller Laboratory experiment shows that noise can be lessened for LISA , 2010 .

[23]  Kirk McKenzie,et al.  Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. , 2010, Physical review letters.

[24]  S. Dhurandhar,et al.  Time-delay interferometry for LISA with one arm dysfunctional , 2010, 1001.4911.

[25]  S. Dhurandhar Time-delay interferometry and the relativistic treatment of LISA optical links , 2008, 0808.2696.

[26]  General relativistic treatment of LISA optical links , 2008, 0805.4314.

[27]  M. Vallisneri,et al.  Sensitivity and parameter-estimation precision for alternate LISA configurations , 2007, 0710.4369.

[28]  J. Armstrong,et al.  Modulator noise suppression in the LISA time-delay interferometric combinations , 2007, 0707.3843.

[29]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[30]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[31]  Daniel A. Shaddock,et al.  Overview of the LISA Phasemeter , 2006 .

[32]  J. Vinet,et al.  On the minimum flexing of LISA's arms , 2006 .

[33]  G. Woan,et al.  A principal component analysis for LISA -- the TDI connection , 2006, gr-qc/0602033.

[34]  J. W. Armstrong,et al.  Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking , 2006, Living reviews in relativity.

[35]  J. Vinet,et al.  Algebraic approach to time-delay data analysis: orbiting case , 2005 .

[36]  M. Vallisneri Geometric time delay interferometry , 2005, gr-qc/0504145.

[37]  M. Vallisneri,et al.  Time-delay interferometric ranging for space-borne gravitational-wave detectors , 2004, gr-qc/0410122.

[38]  A. Pai,et al.  Erratum: Optimizing the directional sensitivity of LISA [Phys. Rev. D68, 122001 (2003)] , 2004 .

[39]  Robert Eliot Spero,et al.  Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.

[40]  Scott A. Diddams,et al.  Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.

[41]  A. Królak,et al.  Optimal filtering of the LISA data , 2004, gr-qc/0401108.

[42]  F. Estabrook,et al.  Time Delay Interferometry with Moving Spacecraft Arrays , 2003, gr-qc/0310017.

[43]  D. Shaddock Operating LISA as a Sagnac interferometer , 2003, gr-qc/0306125.

[44]  M. Tinto,et al.  Noise characterization for LISA , 2003, gr-qc/0308085.

[45]  Daniel A. Shaddock,et al.  Data Combinations Accounting for LISA Spacecraft Motion , 2003, gr-qc/0307080.

[46]  N. Cornish,et al.  The effects of orbital motion on LISA time delay interferometry , 2003, gr-qc/0306096.

[47]  A. Pai,et al.  Optimizing the directional sensitivity of LISA , 2003, gr-qc/0306050.

[48]  T. Hyde,et al.  Laser interferometer space antenna dynamics and controls model , 2003 .

[49]  Avri Selig,et al.  End-to-end simulations for the LISA Technology Package , 2003 .

[50]  S. Merkowitz The LISA Integrated Model , 2003 .

[51]  Daniel A. Shaddock,et al.  Implementation of time-delay interferometry for LISA , 2003, gr-qc/0303013.

[52]  A. Pai,et al.  Improving the Sensitivity of LISA , 2002, gr-qc/0210014.

[53]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[54]  J. Armstrong,et al.  Time-delay interferometry and noise cancellation schemes for LISA , 2002 .

[55]  M. Tinto The CASSINI Ka-band gravitational wave experiments , 2002 .

[56]  John W. Armstrong,et al.  Time-delay interferometry for LISA , 2002 .

[57]  S. Dhurandhar,et al.  Algebraic approach to time-delay data analysis for LISA , 2001, gr-qc/0112059.

[58]  J. Armstrong,et al.  Discriminating a gravitational wave background from instrumental noise using time-delay interferometry , 2001 .

[59]  J. Armstrong,et al.  Sensitivities of alternate LISA configurations , 2001 .

[60]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[61]  C. Hogan,et al.  Estimating stochastic gravitational wave backgrounds with the Sagnac calibration , 2001, astro-ph/0104266.

[62]  R. Hellings Elimination of clock jitter noise in spaceborne laser interferometers , 2000, gr-qc/0012013.

[63]  L. Finn Aperture synthesis for gravitational-wave data analysis: Deterministic sources , 2000, gr-qc/0010033.

[64]  J. Armstrong,et al.  Discriminating a gravitational wave background from instrumental noise in the LISA detector , 2000 .

[65]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[66]  J. Armstrong,et al.  Time-delay analysis of LISA gravitational data: elimination spacecraft motion effects , 2000 .

[67]  Karsten Danzmann,et al.  LISA interferometer sensitivity to spacecraft motion , 2000 .

[68]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[69]  John W. Armstrong,et al.  Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation , 1999 .

[70]  Spacecraft to Spacecraft Coherent Laser Tracking as a Xylophone Interferometer Detector of Gravitational Radiation , 1998 .

[71]  Bernard F. Schutz,et al.  LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space , 1998 .

[72]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[73]  William M. Folkner,et al.  LISA orbit selection and stability , 1997 .

[74]  J. Faller,et al.  Algorithms for Unequal-Arm Michelson Interferometers , 1996 .

[75]  Unto K. Laine,et al.  Splitting the unit delay [FIR/all pass filters design] , 1996, IEEE Signal Process. Mag..

[76]  Estabrook,et al.  Parallel beam interferometric detectors of gravitational waves. , 1995, Physical review. D, Particles and fields.

[77]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[78]  Robin T. Stebbins,et al.  An antenna for laser gravitational-wave observations in space , 1989 .

[79]  H. Wahlquist The Doppler response to gravitational waves from a binary star source , 1987 .

[80]  F. Estabrook Response functions of free mass gravitational wave antennas , 1985 .

[81]  John L. Hall,et al.  Space antenna for gravitational wave astronomy. , 1985 .

[82]  P. Bender,et al.  A Possible Laser Gravitational Wave Experiment in Space , 1984 .

[83]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[84]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .

[85]  B. Noble Applied Linear Algebra , 1969 .

[86]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .