Integrable deformations of integrable symplectic maps

Abstract A method of generating integrable deformations of integrable symplectic maps is presented. The integrable deformations of the integrable Toda symplectic map, the integrable Volterra symplectic map and the integrable Ablowitz–Ladik symplectic map, as well as their Lax representations are obtained.

[1]  X. Geng,et al.  From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation , 1999 .

[2]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[3]  S. Rauch-Wojciechowski,et al.  Continuous limits for the Kac-Van Moerbeke hierarchy and for their restricted flows , 1995 .

[4]  Geng Xianguo Finite‐dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalue problem , 1993 .

[5]  Z. Qiao r-matrix and algebraic-geometric solution for integrable symplectic map , 1999 .

[6]  Xianguo Geng,et al.  Nonlinearization of the Lax pairs for discrete Ablowitz–Ladik hierarchy , 2007 .

[7]  P. Bozhilov Neumann and Neumann-Rosochatius integrable systems from membranes on AdS_4xS^7 , 2007, 0704.3082.

[8]  S. Wojciechowski Integrability of One Particle in a Perturbed Central Quartic Potential , 1985 .

[9]  O. Ragnisco A discrete Neumann system , 1992 .

[10]  Ruguang Zhou Integrable Rosochatius deformations of the restricted soliton flows , 2007 .

[11]  O. Ragnisco,et al.  Integrable maps for the Garnier and for the Neumann system , 1996 .

[12]  O. Ragnisco DYNAMICAL R-MATRICES FOR INTEGRABLE MAPS , 1995 .

[13]  C. Neumann De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur. , 1859 .

[14]  Yuqin Yao,et al.  The Bi-Hamiltonian Structure and New Solutions of KdV6 Equation , 2008, 0810.1986.

[15]  N. A. Kostov,et al.  Quasi–periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  P. Santini,et al.  Integrable symplectic maps , 1991 .

[17]  Discrete Bargmann and Neumann systems and finite-dimensional integrable systems , 1994 .

[18]  Wenxiu Ma,et al.  Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations , 1998, solv-int/9809009.

[19]  O. Babelon,et al.  Hamiltonian structures and Lax equations , 1990 .

[20]  Yunbo Zeng,et al.  Integrable Rosochatius deformations of higher-order constrained flows and the soliton hierarchy with self-consistent sources , 2008, 0806.2251.

[21]  O. Ragnisco,et al.  On the relation of the stationary Toda equation and the symplectic maps , 1995 .

[22]  Discrete and continuous integrable systems possessing the same non-dynamical r-matrix , 1997 .

[23]  Y. Yasui,et al.  The Gauss-Knörrer map for the Rosochatius dynamical system , 1999 .

[24]  Dai Ji-Long,et al.  Integrable Rosochatius Deformations of the Restricted cKdV Flows , 2008 .

[25]  Xianguo Geng,et al.  Decomposition of the Discrete Ablowitz–Ladik Hierarchy , 2007 .

[26]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[27]  Ruguang Zhou,et al.  Classical r-matrix structures of integrable mappings related to the Volterra lattice , 2000 .

[28]  N. A. Kostov,et al.  Quasi-periodic solutions of the integrable dynamical systems related to Hill's equation , 1989 .