Integrable deformations of integrable symplectic maps
暂无分享,去创建一个
[1] X. Geng,et al. From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation , 1999 .
[2] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[3] S. Rauch-Wojciechowski,et al. Continuous limits for the Kac-Van Moerbeke hierarchy and for their restricted flows , 1995 .
[4] Geng Xianguo. Finite‐dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalue problem , 1993 .
[5] Z. Qiao. r-matrix and algebraic-geometric solution for integrable symplectic map , 1999 .
[6] Xianguo Geng,et al. Nonlinearization of the Lax pairs for discrete Ablowitz–Ladik hierarchy , 2007 .
[7] P. Bozhilov. Neumann and Neumann-Rosochatius integrable systems from membranes on AdS_4xS^7 , 2007, 0704.3082.
[8] S. Wojciechowski. Integrability of One Particle in a Perturbed Central Quartic Potential , 1985 .
[9] O. Ragnisco. A discrete Neumann system , 1992 .
[10] Ruguang Zhou. Integrable Rosochatius deformations of the restricted soliton flows , 2007 .
[11] O. Ragnisco,et al. Integrable maps for the Garnier and for the Neumann system , 1996 .
[12] O. Ragnisco. DYNAMICAL R-MATRICES FOR INTEGRABLE MAPS , 1995 .
[13] C. Neumann. De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur. , 1859 .
[14] Yuqin Yao,et al. The Bi-Hamiltonian Structure and New Solutions of KdV6 Equation , 2008, 0810.1986.
[15] N. A. Kostov,et al. Quasi–periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] P. Santini,et al. Integrable symplectic maps , 1991 .
[17] Discrete Bargmann and Neumann systems and finite-dimensional integrable systems , 1994 .
[18] Wenxiu Ma,et al. Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations , 1998, solv-int/9809009.
[19] O. Babelon,et al. Hamiltonian structures and Lax equations , 1990 .
[20] Yunbo Zeng,et al. Integrable Rosochatius deformations of higher-order constrained flows and the soliton hierarchy with self-consistent sources , 2008, 0806.2251.
[21] O. Ragnisco,et al. On the relation of the stationary Toda equation and the symplectic maps , 1995 .
[22] Discrete and continuous integrable systems possessing the same non-dynamical r-matrix , 1997 .
[23] Y. Yasui,et al. The Gauss-Knörrer map for the Rosochatius dynamical system , 1999 .
[24] Dai Ji-Long,et al. Integrable Rosochatius Deformations of the Restricted cKdV Flows , 2008 .
[25] Xianguo Geng,et al. Decomposition of the Discrete Ablowitz–Ladik Hierarchy , 2007 .
[26] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[27] Ruguang Zhou,et al. Classical r-matrix structures of integrable mappings related to the Volterra lattice , 2000 .
[28] N. A. Kostov,et al. Quasi-periodic solutions of the integrable dynamical systems related to Hill's equation , 1989 .