On Finding Complementary Clusterings

In many cases, a dataset can be clustered following sev- eral criteria that complement each other: group membership following one criterion provides little or no information regarding group membership following the other criterion. When these criteria are not known ap ri- ori, they have to be determined from the data. We put forward a new method for jointly finding the complementary criteria and the clustering corresponding to each criterion.

[1]  Michael I. Jordan,et al.  Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..

[2]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[3]  Jean-François Cardoso,et al.  Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[4]  Antti Honkela,et al.  Agglomerative Independent Variable Group Analysis , 2007, ESANN.

[5]  Ying Cui,et al.  Non-redundant Multi-view Clustering via Orthogonalization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[6]  Antti Honkela,et al.  Compact Modeling of Data Using Independent Variable Group Analysis , 2007, IEEE Transactions on Neural Networks.

[7]  Inderjit S. Dhillon,et al.  Simultaneous Unsupervised Learning of Disparate Clusterings , 2008, Stat. Anal. Data Min..