Sharp High-Frequency Estimates for the Helmholtz Equation and Applications to Boundary Integral Equations

We consider three problems for the Helmholtz equation in interior and exterior domains in $\mathbb{R}^d$ ($d=2,3$): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp estimates for solutions to these problems that, in combination, give bounds on the inverses of the combined-field boundary integral operators for exterior Helmholtz problems.

[1]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[2]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[3]  J. Melenk,et al.  On Stability of Discretizations of the Helmholtz Equation (extended version) , 2011, 1105.2112.

[4]  Oscar P. Bruno,et al.  Regularized integral equations and fast high‐order solvers for sound‐hard acoustic scattering problems , 2012 .

[5]  Weiwei Sun,et al.  Legendre Spectral Galerkin Method for Electromagnetic Scattering from Large Cavities , 2013, SIAM J. Numer. Anal..

[6]  Maciej Zworski,et al.  Resonance expansions of scattered waves , 2000 .

[7]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[8]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[9]  P. Cummings,et al.  SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .

[10]  G. Vodev,et al.  ASYMPTOTICS OF THE NUMBER OF RESONANCES IN THE TRANSMISSION PROBLEM , 2001 .

[11]  Zydrunas Gimbutas,et al.  Boundary integral equation analysis on the sphere , 2014, Numerische Mathematik.

[12]  V. M. Babič ON THE ASYMPTOTICS OF GREEN′S FUNCTIONS FOR CERTAIN WAVE PROBLEMS. I. STATIONARY CASE , 1971 .

[13]  R. Sakamoto Mixed problems for hyperbolic equations II, Existence Theorem with Zero Initial Data and Energy Inequalities with Initial Datas , 1970 .

[14]  V. Edwards Scattering Theory , 1973, Nature.

[15]  R. Kress Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering , 1985 .

[16]  Cathleen S. Morawetz,et al.  Decay for solutions of the exterior problem for the wave equation , 1975 .

[17]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[18]  J. Wunsch,et al.  Resolvent estimates and local decay of waves on conic manifolds , 2012, 1209.4883.

[19]  D. Ludwig,et al.  An inequality for the reduced wave operator and the justification of geometrical optics , 1968 .

[20]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[21]  R. Sakamoto Mixed problems for hyperbolic equations I Energy inequalities , 1970 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  S. Marburg A review of the coupling parameter of the Burton and Miller boundary element method , 2014 .

[24]  Jeffrey Galkowski,et al.  Restriction Bounds for the Free Resolvent and Resonances in Lossy Scattering , 2014, 1401.6243.

[25]  J. Sjoestrand Weyl law for semi-classical resonances with randomly perturbed potentials , 2011, 1111.3549.

[26]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[27]  Plamen Stefanov,et al.  Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body , 1995 .

[28]  S. Amini On the choice of the coupling parameter in boundary integral formulations of the exterior acoustic problem , 1990 .

[29]  Gang Bao,et al.  Stability of the Scattering from a Large Electromagnetic Cavity in Two Dimensions , 2012, SIAM J. Math. Anal..

[30]  Necas Jindrich Les Méthodes directes en théorie des équations elliptiques , 2017 .

[31]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[32]  Jie Shen,et al.  Spectral Approximation of the Helmholtz Equation with High Wave Numbers , 2005, SIAM J. Numer. Anal..

[33]  Simon N. Chandler-Wilde,et al.  Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples , 2014, 1404.3599.

[34]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[35]  R. Melrose Microlocal parametrices for diffractive boundary value problems , 1975 .

[36]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[37]  Michael Taylor,et al.  Qualitative studies of linear equations , 1996 .

[38]  An elliptic regularity coefficient estimate for a problem arising from a frequency domain treatment of waves , 1994 .

[39]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[40]  Euan A. Spence,et al.  Coercivity of Combined Boundary Integral Equations in High‐Frequency Scattering , 2015 .

[41]  E. Lakshtanov,et al.  A Priori Estimates for High Frequency Scattering by Obstacles of Arbitrary Shape , 2010, 1011.5261.

[42]  M. A. Jaswon Boundary Integral Equations , 1984 .

[43]  U. Hetmaniuk Stability estimates for a class of Helmholtz problems , 2007 .

[44]  Michael E. Taylor,et al.  Grazing rays and reflection of singularities of solutions to wave equations , 1976 .

[45]  Lars Hr̲mander,et al.  The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators , 1985 .

[46]  Jeffrey Galkowski,et al.  Sharp norm estimates of layer potentials and operators at high frequency , 2014, 1403.6576.

[47]  Xavier Antoine,et al.  Integral Equations and Iterative Schemes for Acoustic Scattering Problems , 2016 .

[48]  Location of eigenvalues for the wave equation with dissipative boundary conditions , 2015, 1504.06408.

[49]  Euan A. Spence,et al.  Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering , 2014, SIAM J. Math. Anal..

[50]  Jens Markus Melenk,et al.  Wavenumber-Explicit hp-BEM for High Frequency Scattering , 2011, SIAM J. Numer. Anal..

[51]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[52]  Maxim A. Olshanskii,et al.  Iterative Methods for Linear Systems - Theory and Applications , 2014 .

[53]  Jens Markus Melenk,et al.  Mapping Properties of Combined Field Helmholtz Boundary Integral Operators , 2012, SIAM J. Math. Anal..

[54]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[55]  I. Graham,et al.  Condition number estimates for combined potential boundary integral operators in acoustic scattering , 2009 .

[56]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[57]  L. Aloui Stabilisation Neumann pour l'équation des ondes dans un domaine extérieur , 2002 .

[58]  Lin Zhao,et al.  Robust and Efficient Solution of the Drum Problem via Nyström Approximation of the Fredholm Determinant , 2014, SIAM J. Numer. Anal..

[59]  Andrea Moiola,et al.  Is the Helmholtz Equation Really Sign-Indefinite? , 2014, SIAM Rev..

[60]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[61]  S. Marburg The Burton and Miller method: Unlocking another mystery of its coupling parameter , 2016 .

[62]  R. Melrose,et al.  Singularities and energy decay in acoustical scattering , 1979 .

[63]  L. Greengard,et al.  On the stability of time-domain integral equations for acoustic wave propagation , 2015, 1504.04047.

[64]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[65]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[66]  Daniel Tataru,et al.  ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .

[67]  Weiwei Sun,et al.  A numerical study on the stability of a class of Helmholtz problems , 2015, J. Comput. Phys..

[68]  Y. Egorov,et al.  Mixed Problems for Hyperbolic Equations , 1994 .

[69]  Lehel Banjai,et al.  A Refined Galerkin Error and Stability Analysis for Highly Indefinite Variational Problems , 2007, SIAM J. Numer. Anal..

[70]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[71]  Yassine Boubendir,et al.  Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions , 2013 .

[72]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[73]  Daniel W. Lozier,et al.  NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.

[74]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[75]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[76]  R. S. Phillips,et al.  Scattering Theory for the Acoustic Equation in an Even Number of Space Dimensions , 1972 .

[77]  J. Ralston Solutions of the wave equation with localized energy , 1969 .

[78]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[79]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[80]  Jeffrey Galkowski,et al.  Distribution of Resonances in Scattering by Thin Barriers , 2014, Memoirs of the American Mathematical Society.