Numerical analysis of aperiodic photonic crystal fiber structures for supercontinuum generation

An unconventional photonic crystal fiber (PCF) is designed in order to obtain supercontinuum (SC) generation. The distance of the air hole rings is not constant, but it follows the Thue-Morse (ThMo) aperiodic sequence. The spectral broadening of high power femtosecond (fs) input pulses in anomalous dispersion regime is investigated by means of a homemade computer code, based on the generalized nonlinear Schrodinger equation (GNLSE) and implemented via the symmetrized split-step Fourier method (S-SSF). A lot of ThMo PCF transversal sections are simulated, and the one providing the flattest and the widest spectrum is identified and further refined by varying the operating conditions. Three different peak powers (5, 10, 15 kW) and three different pulse durations (40, 50, 100 fs) are investigated at the pump wavelength λP = 1064  nm. The novel ThMo PCF proposed in this paper exhibits a SC figure of merit Φ = 16, very high with respect to the state of the art pertaining to fs input pulses.

[1]  Tanya M Monro,et al.  Extrusion of complex preforms for microstructured optical fibers. , 2007, Optics express.

[2]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[3]  Supercontinuum generation in photonic crystal fiber using femtosecond pulses , 2011 .

[4]  Rodislav Driben,et al.  Supercontinuum spectrum control in microstructure fibers by initial chirp management. , 2010, Optics express.

[5]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[6]  D. Deng,et al.  Supercontinuum generation in short dispersion-shifted fiber by a femtosecond fiber laser , 2010 .

[7]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[8]  G. Agrawal Chapter 11 – Highly Nonlinear Fibers , 2006 .

[9]  Virginie Nazabal,et al.  Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers , 2009 .

[10]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[11]  K. Lyytikainen,et al.  Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber , 2003 .

[12]  L. Fu,et al.  Efficient supercontinuum generations in silica suspended core fibers. , 2008, Optics express.

[13]  J. Adam,et al.  Chalcogenide glass hollow core photonic crystal fibers , 2010 .

[14]  L. Provino,et al.  Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping , 2002 .

[15]  T. Kuri,et al.  Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source , 2006, Journal of Lightwave Technology.

[16]  Luigi Moretti,et al.  Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence. , 2007, Optics express.

[17]  A D'Orazio,et al.  Refinement of Er3+-doped hole-assisted optical fiber amplifier. , 2005, Optics express.

[18]  John Ballato,et al.  Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting , 2010 .

[19]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[20]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  J. Knight,et al.  Photonic BandGap Fiber With Multiple Hollow Cores , 2010, Journal of Lightwave Technology.

[22]  L. Brilland,et al.  Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers. , 2010, Optics express.

[23]  Jinyan Li,et al.  High nonlinear photonic crystal fiber and its supercontinuum spectrum , 2008 .

[24]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[25]  William J. Wadsworth,et al.  Soliton effects in photonic crystal fibres at 850 nm , 2000 .

[26]  J. Broeng,et al.  Low pump power photonic crystal fiber amplifiers , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[27]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[28]  Jonathan D. Shephard,et al.  Properties of Ga-La-Na sulphide glasses , 2003 .

[29]  Slawomir Sujecki,et al.  Progress in rare-earth-doped mid-infrared fiber lasers. , 2010, Optics express.

[30]  F. Prudenzano,et al.  Erbium-doped hole-assisted optical fiber amplifier: design and optimization , 2005, Journal of Lightwave Technology.

[31]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[32]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[33]  P. Andrés,et al.  Designing the properties of dispersion-flattened photonic crystal fibers. , 2001, Optics express.

[34]  Angela B. Seddon,et al.  Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers , 2008 .

[35]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.