Water jet technology using at orthopaedic surgery

Subject review The paper deals with potential uses of water jet technology and its modification for cutting of bone tissue and bio-materials. It summarises the present state of the art, defines problems from the technological and surgical point of view in order to increase the quality of treated clients. The paper represents an overview and the first step towards using water jet technique in orthopaedic surgery, during dissintegration of interface between bone and femoral stem.

[1]  Vinay Sharma MULTI RESPONSE OPTIMIZATION OF PROCESS PARAMETERS BASED ON TAGUCHI- FUZZY MODEL FOR COAL CUTTING BY WATER JET TECHNOLOGY , 2010 .

[2]  R. Edlich,et al.  Influence of irrigation solutions on oscillating bone saw blade performance. , 1998, Journal of biomedical materials research.

[3]  J. Lustmann,et al.  193 nm excimer laser ablation of bone , 1991, Lasers in surgery and medicine.

[4]  K. Rokosz,et al.  Characterization of Passive Film Formed on AISI 316L Stainless Steel after Magnetoelectropolishing in a Broad Range of Polarization Parameters , 2012 .

[5]  R. Rentzsch,et al.  Water Jet Cutting zur Bearbeitung von Knochen und Knochenzement – Parameterstudie zu Möglichkeiten und Grenzen einer neuen Methode - Water Jet Cutting of Bone and Bone Cement. A Study of the Possibilities and Limitations of a New Technique , 2000 .

[6]  K J Patel,et al.  Increasing cut surface quality with various cutting nozzle head oscillations for abrasive aquajet machining , 2003 .

[7]  Petr Hlaváček,et al.  EROSION OF METALS BY PULSATING WATER JET , 2012 .

[8]  L Ryd,et al.  On the problem of heat generation in bone cutting. Studies on the effects on liquid cooling. , 1991, The Journal of bone and joint surgery. British volume.

[9]  M. Honl,et al.  [Temperature measurements during abrasive water jet osteotomy]. , 2004, Biomedizinische Technik. Biomedical engineering.

[10]  M. Morlock,et al.  The use of water-jetting technology in prostheses revision surgery-first results of parameter studies on bone and bone cement. , 2000, Journal of biomedical materials research.

[11]  A. Ruggiero,et al.  Approximate closed-form solution of the synovial fluid film force in the human ankle joint with non-Newtonian lubricant , 2013 .

[12]  P. Konarski,et al.  SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions , 2011 .

[13]  Danko Brezak,et al.  Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill , 2012, International Orthopaedics.

[14]  Rui L Reis,et al.  Bone tissue engineering: state of the art and future trends. , 2004, Macromolecular bioscience.

[15]  C. Kuhlmann,et al.  Evaluation verfahrensspezifischer Risikopotentiale der Wasserabrasivstrahl – Osteotomie in-vivo / Evaluation of potential risks of abrasive water jet osteotomy in-vivo , 2005, Biomedizinische Technik. Biomedical engineering.

[16]  W R Krause,et al.  Temperature elevations in orthopaedic cutting operations. , 1982, Journal of biomechanics.

[17]  M Honl,et al.  [Water jet cutting for bones and bone cement--parameter study of possibilities and limits of a new method]. , 2000, Biomedizinische Technik. Biomedical engineering.

[18]  Toma Udiljak,et al.  INVESTIGATION INTO BONE DRILLING AND THERMAL BONE NECROSIS , 2007 .

[19]  M. Modest,et al.  Energy requirements for osteotomy of femora and tibiae with a moving CW CO2 laser , 1987, Lasers in surgery and medicine.

[20]  Sergej Hloch,et al.  WATER JET TECHNOLOGY USED IN MEDICINE , 2010 .

[21]  P. Postawa,et al.  Anisotropy of physical properties injection moulded parts and its analysis , 2007 .

[22]  Sergej Hloch,et al.  Multi response optimization of process parameters based on Taguchi—Fuzzy model for coal cutting by water jet technology , 2011 .

[23]  G. Augustin,et al.  Cortical bone drilling and thermal osteonecrosis. , 2012, Clinical biomechanics.

[24]  R. Sinha,et al.  Surgical approaches to total hip arthroplasty. , 2003, Journal of the Southern Orthopaedic Association.

[25]  M. Honl,et al.  Wärmeentwicklung bei der Wasser-Abrasivstrahl-Osteotomie / Temperature Measurements During Abrasive Water Jet Osteotomy , 2004 .

[26]  J. Losanoff,et al.  Reconstructive renal surgery using a water jet. , 1999, The Journal of urology.

[27]  Josef Foldyna,et al.  ULTRASONIC PULSATIONS OF PRESSURE IN A WATER JET CUTTING TOOL , 2012 .

[28]  Hakan Tozan,et al.  FUZZY AHP BASED DECISION SUPPORT SYSTEM FOR TECHNOLOGY SELECTION IN ABRASIVE WATER JET CUTTING PROCESSES , 2010 .

[29]  Jan Valíček,et al.  Derivation and Measurement of the Velocity Parameters of Hydrodynamics Oscillating System , 2008 .

[30]  Garrett B. McGuinness,et al.  High-power low-frequency ultrasound: A review of tissue dissection and ablation in medicine and surgery , 2008 .

[31]  Em Tansey,et al.  Early Development of Total Hip Replacement , 2007 .

[32]  Radovan Kovacevic,et al.  Principles of Abrasive Water Jet Machining , 2012 .

[33]  P. Stoll,et al.  Increase of temperature during osteotomy. In vitro and in vivo investigations. , 1991, International journal of oral and maxillofacial surgery.

[34]  Markus Kleemann,et al.  Intraoperative online navigation of dissection of the hepatical tissue - a new dimension in liver surgery? , 2004, CARS.

[35]  A. Clark,et al.  Bed exercises following total hip replacement: a randomised controlled trial. Oral Presentation , 2008 .

[36]  J. A. McGeough,et al.  Experimental evaluation of laser cutting of bone , 2004 .

[37]  Hakan Tozan Sustav potpore neizrazitom AHP utemeljenom odlučivanju u izboru tehnologije u procesu rezanja abrazivnim vodenim mlazom , 2011 .