Shape Effects on Electronic States of Nanocrystals.

High-performance supercomputing and high-fidelity atomistic methods are used to study the shape effects on the single-particle electronic states of nanocrystals. We found that the shape can be used as an efficient way to control the electronic structures of the nanocrystals. Changing the shape is more flexible and provides more variety of electronic states than simply changing the size of the system. The special features of the electronic states achieved by different shapes of the nanocrystals can be used in various device applications. Simple rules are summarized to predict the electronic structure shape effects on similar nanocrystals.

[1]  Lin-wang Wang,et al.  High Energy Excitations in CdSe Quantum Rods , 2003 .

[2]  A. Zunger,et al.  Addition energies and quasiparticle gap of CdSe nanocrystals , 2000 .

[3]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[4]  A. P. Alivisatos,et al.  Semiempirical Pseudopotential Calculation of Electronic States of CdSe Quantum Rods , 2002 .

[5]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[6]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[7]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[8]  U. Banin,et al.  Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots , 1999, Nature.

[9]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[10]  Wang,et al.  Pseudopotential calculations of nanoscale CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[11]  Uri Banin,et al.  Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity , 2002 .

[12]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[13]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[14]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[15]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[16]  S. Louie,et al.  Spatially mapping the spectral density of a single C60 molecule. , 2003, Physical review letters.

[17]  Lin-wang Wang,et al.  MANY-BODY PSEUDOPOTENTIAL THEORY OF EXCITONS IN INP AND CDSE QUANTUM DOTS , 1999 .

[18]  Suhuai Wei,et al.  Structure stability and carrier localization in Cd X ( X = S , S e , Te ) semiconductors , 2000 .

[19]  A. P. Alivisatos,et al.  Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods , 2001 .

[20]  A. Zunger,et al.  High-Energy Excitonic Transitions in CdSe Quantum Dots , 1998 .

[21]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[22]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.