RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway.
暂无分享,去创建一个
Panagiotis Karras | Osvaldo Graña | Gonzalo Gómez-López | David G Pisano | D. Pisano | M. Soengas | K. Hoek | G. Gómez-López | D. Megías | J. Rodríguez-Peralto | P. Ortiz-Romero | O. Graña | D. Tormo | Direna Alonso-Curbelo | Eva Pérez-Guijarro | E. Riveiro‐Falkenbach | T. G. Calvo | J. Joyce | Johanna A Joyce | David Olmeda | Lisa Osterloh | D. Olmeda | Hao-wei Wang | V. J. Sánchez-Arévalo Lobo | Diego Megías | Eva Pérez-Guijarro | Damià Tormo | Direna Alonso-Curbelo | Estela Cañón | Erica Riveiro-Falkenbach | Tonantzin G Calvo | José L Rodríguez-Peralto | Pablo Ortiz-Romero | María S Soengas | Metehan Cifdaloz | Víctor Javier Sánchez-Arévalo Lobo | Hao-Wei Wang | Keith Hoek | M. Cifdaloz | L. Osterloh | Panagiotis Karras | Estela Cañón | David Olmeda | Hao-wei wang
[1] T. Yamashita,et al. Identification of rab7 as a melanosome-associated protein involved in the intracellular transport of tyrosinase-related protein 1. , 2001, The Journal of investigative dermatology.
[2] Ming Zhang,et al. Rab7: roles in membrane trafficking and disease. , 2009, Bioscience reports.
[3] Chi V Dang,et al. MYC on the Path to Cancer , 2012, Cell.
[4] Andrea Ballabio,et al. TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.
[5] S. G. Roy,et al. Reciprocal effects of rab7 deletion in activated and neglected T cells , 2013, Autophagy.
[6] J. Lachuer,et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. , 2013, Cancer cell.
[7] M. Coppolino,et al. Phosphorylation of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) and Its Vesicle-associated Membrane Protein 7 (VAMP7)-dependent Trafficking Facilitate Cell Invasion and Migration* , 2011, The Journal of Biological Chemistry.
[8] Graça Raposo,et al. Melanosomes — dark organelles enlighten endosomal membrane transport , 2007, Nature Reviews Molecular Cell Biology.
[9] D. Pe’er,et al. An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.
[10] E. Skordalakes,et al. Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation , 2009, Human molecular genetics.
[11] C. Cordon-Cardo,et al. Oncogenes in melanoma , 2003, Oncogene.
[12] T. Giordano,et al. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells , 2008, Oncogene.
[13] Jun S. Song,et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition , 2013, Proceedings of the National Academy of Sciences.
[14] C. Thompson,et al. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. , 2003, Developmental cell.
[15] Steven A. Roberts,et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .
[16] Jean-Philippe Brunet,et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation , 2005, Nature Genetics.
[17] E. Lander,et al. Lessons from the Cancer Genome , 2013, Cell.
[18] Marino Zerial,et al. Rab proteins as membrane organizers , 2001, Nature Reviews Molecular Cell Biology.
[19] Joshua J. Steffan,et al. Supporting a Role for the GTPase Rab7 in Prostate Cancer Progression , 2014, PloS one.
[20] D. Botstein,et al. A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.
[21] B. Deurs,et al. Rab7: a key to lysosome biogenesis. , 2000, Molecular biology of the cell.
[22] R. Dummer,et al. In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.
[23] Q. Zeng,et al. A role of Rab7 in stabilizing EGFR‐Her2 and in sustaining Akt survival signal , 2012, Journal of cellular physiology.
[24] P. Puigserver,et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. , 2013, Cancer cell.
[25] M. Soengas,et al. The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy , 2011, Pigment cell & melanoma research.
[26] M. Okoniewski,et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma , 2012, Nature Cell Biology.
[27] R. Halaban,et al. Deregulated E2f Transcriptional Activity in Autonomously Growing Melanoma Cells , 2000, The Journal of experimental medicine.
[28] Adam A. Margolin,et al. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.
[29] Joshua J. Steffan,et al. Thiazolidinediones Induce Rab7–RILP–MAPK‐Dependent Juxtanuclear Lysosome Aggregation and Reduce Tumor Cell Invasion , 2010, Traffic.
[30] Carmit Levy,et al. The three M’s: melanoma, microphthalmia‐associated transcription factor and microRNA , 2011, Pigment cell & melanoma research.
[31] J. Goldenring. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis , 2013, Nature Reviews Cancer.
[32] M. Greene,et al. Malignant melanoma and Charcot-Marie-Tooth disease. , 1980, American journal of medical genetics.
[33] C. Schirren. [The melanoma]. , 1962, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete.
[34] M. Cole,et al. Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. , 2012, Cancer Research.
[35] M. Herlyn,et al. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway , 2011, Oncogene.
[36] U. Schumacher,et al. CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[37] E. Sahai,et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. , 2009, Cancer research.
[38] Jae K. Lee,et al. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study , 2007, Molecular Cancer Therapeutics.
[39] I. Davidson,et al. MITF, the Janus transcription factor of melanoma. , 2013, Future oncology.
[40] Alexander Roesch,et al. A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.
[41] C. Bertolotto,et al. Fifteen‐year quest for microphthalmia‐associated transcription factor target genes , 2010, Pigment cell & melanoma research.
[42] L. Chin,et al. Melanoma: from mutations to medicine. , 2012, Genes & development.
[43] W. Sellers,et al. Lineage dependency and lineage-survival oncogenes in human cancer , 2006, Nature Reviews Cancer.
[44] R. Dummer,et al. Systematic classification of melanoma cells by phenotype‐specific gene expression mapping , 2012, Pigment cell & melanoma research.
[45] C. Duve. The lysosome turns fifty , 2005, Nature Cell Biology.
[46] K. Hoek,et al. GLI2 and M‐MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells , 2011, Pigment cell & melanoma research.
[47] Jun S. Song,et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.
[48] W. Hong,et al. Rab7: role of its protein interaction cascades in endo-lysosomal traffic. , 2011, Cellular signalling.
[49] Steven A. Roberts,et al. Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .
[50] J. Joyce,et al. Proteolytic networks in cancer. , 2011, Trends in cell biology.
[51] A. Sánchez-Aguilera,et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. , 2007, Cancer research.