RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway.

Although common cancer hallmarks are well established, lineage-restricted oncogenes remain less understood. Here, we report an inherent dependency of melanoma cells on the small GTPase RAB7, identified within a lysosomal gene cluster that distinguishes this malignancy from over 35 tumor types. Analyses in human cells, clinical specimens, and mouse models demonstrated that RAB7 is an early-induced melanoma driver whose levels can be tuned to favor tumor invasion, ultimately defining metastatic risk. Importantly, RAB7 levels and function were independent of MITF, the best-characterized melanocyte lineage-specific transcription factor. Instead, we describe the neuroectodermal master modulator SOX10 and the oncogene MYC as RAB7 regulators. These results reveal a unique wiring of the lysosomal pathway that melanomas exploit to foster tumor progression.

[1]  T. Yamashita,et al.  Identification of rab7 as a melanosome-associated protein involved in the intracellular transport of tyrosinase-related protein 1. , 2001, The Journal of investigative dermatology.

[2]  Ming Zhang,et al.  Rab7: roles in membrane trafficking and disease. , 2009, Bioscience reports.

[3]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[4]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[5]  S. G. Roy,et al.  Reciprocal effects of rab7 deletion in activated and neglected T cells , 2013, Autophagy.

[6]  J. Lachuer,et al.  A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. , 2013, Cancer cell.

[7]  M. Coppolino,et al.  Phosphorylation of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) and Its Vesicle-associated Membrane Protein 7 (VAMP7)-dependent Trafficking Facilitate Cell Invasion and Migration* , 2011, The Journal of Biological Chemistry.

[8]  Graça Raposo,et al.  Melanosomes — dark organelles enlighten endosomal membrane transport , 2007, Nature Reviews Molecular Cell Biology.

[9]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[10]  E. Skordalakes,et al.  Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation , 2009, Human molecular genetics.

[11]  C. Cordon-Cardo,et al.  Oncogenes in melanoma , 2003, Oncogene.

[12]  T. Giordano,et al.  C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells , 2008, Oncogene.

[13]  Jun S. Song,et al.  BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition , 2013, Proceedings of the National Academy of Sciences.

[14]  C. Thompson,et al.  Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. , 2003, Developmental cell.

[15]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[16]  Jean-Philippe Brunet,et al.  The melanocyte differentiation program predisposes to metastasis after neoplastic transformation , 2005, Nature Genetics.

[17]  E. Lander,et al.  Lessons from the Cancer Genome , 2013, Cell.

[18]  Marino Zerial,et al.  Rab proteins as membrane organizers , 2001, Nature Reviews Molecular Cell Biology.

[19]  Joshua J. Steffan,et al.  Supporting a Role for the GTPase Rab7 in Prostate Cancer Progression , 2014, PloS one.

[20]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[21]  B. Deurs,et al.  Rab7: a key to lysosome biogenesis. , 2000, Molecular biology of the cell.

[22]  R. Dummer,et al.  In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.

[23]  Q. Zeng,et al.  A role of Rab7 in stabilizing EGFR‐Her2 and in sustaining Akt survival signal , 2012, Journal of cellular physiology.

[24]  P. Puigserver,et al.  PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. , 2013, Cancer cell.

[25]  M. Soengas,et al.  The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy , 2011, Pigment cell & melanoma research.

[26]  M. Okoniewski,et al.  Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma , 2012, Nature Cell Biology.

[27]  R. Halaban,et al.  Deregulated E2f Transcriptional Activity in Autonomously Growing Melanoma Cells , 2000, The Journal of experimental medicine.

[28]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[29]  Joshua J. Steffan,et al.  Thiazolidinediones Induce Rab7–RILP–MAPK‐Dependent Juxtanuclear Lysosome Aggregation and Reduce Tumor Cell Invasion , 2010, Traffic.

[30]  Carmit Levy,et al.  The three M’s: melanoma, microphthalmia‐associated transcription factor and microRNA , 2011, Pigment cell & melanoma research.

[31]  J. Goldenring A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis , 2013, Nature Reviews Cancer.

[32]  M. Greene,et al.  Malignant melanoma and Charcot-Marie-Tooth disease. , 1980, American journal of medical genetics.

[33]  C. Schirren [The melanoma]. , 1962, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete.

[34]  M. Cole,et al.  Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. , 2012, Cancer Research.

[35]  M. Herlyn,et al.  Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway , 2011, Oncogene.

[36]  U. Schumacher,et al.  CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  E. Sahai,et al.  Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. , 2009, Cancer research.

[38]  Jae K. Lee,et al.  Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study , 2007, Molecular Cancer Therapeutics.

[39]  I. Davidson,et al.  MITF, the Janus transcription factor of melanoma. , 2013, Future oncology.

[40]  Alexander Roesch,et al.  A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.

[41]  C. Bertolotto,et al.  Fifteen‐year quest for microphthalmia‐associated transcription factor target genes , 2010, Pigment cell & melanoma research.

[42]  L. Chin,et al.  Melanoma: from mutations to medicine. , 2012, Genes & development.

[43]  W. Sellers,et al.  Lineage dependency and lineage-survival oncogenes in human cancer , 2006, Nature Reviews Cancer.

[44]  R. Dummer,et al.  Systematic classification of melanoma cells by phenotype‐specific gene expression mapping , 2012, Pigment cell & melanoma research.

[45]  C. Duve The lysosome turns fifty , 2005, Nature Cell Biology.

[46]  K. Hoek,et al.  GLI2 and M‐MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells , 2011, Pigment cell & melanoma research.

[47]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[48]  W. Hong,et al.  Rab7: role of its protein interaction cascades in endo-lysosomal traffic. , 2011, Cellular signalling.

[49]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[50]  J. Joyce,et al.  Proteolytic networks in cancer. , 2011, Trends in cell biology.

[51]  A. Sánchez-Aguilera,et al.  A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. , 2007, Cancer research.