Large deformation frictional contact analysis with immersed boundary method

[1]  Juan José Ródenas,et al.  Direct medical image-based Finite Element modelling for patient-specific simulation of future implants , 2017 .

[2]  Peter Hansbo,et al.  Least-squares stabilized augmented Lagrangian multiplier method for elastic contact , 2016 .

[3]  J. L. Alves,et al.  A contact smoothing method for arbitrary surface meshes using Nagata patches , 2016 .

[4]  Juan José Ródenas,et al.  Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field , 2015 .

[5]  Juan José Ródenas,et al.  Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry , 2015 .

[6]  Konstantinos Poulios,et al.  An unconstrained integral approximation of large sliding frictional contact between deformable solids , 2015 .

[7]  Manuel Tur,et al.  A modified perturbed Lagrangian formulation for contact problems , 2015 .

[8]  Scott M. Johnson,et al.  A weighted Nitsche stabilized method for small-sliding contact on frictional surfaces , 2015 .

[9]  Marlon Franke,et al.  Isogeometric Analysis and thermomechanical Mortar contact problems , 2014 .

[10]  M. Hammer Frictional mortar contact for finite deformation problems with synthetic contact kinematics , 2013 .

[11]  Juan José Ródenas,et al.  Efficient finite element methodology based on cartesian grids: application to structural shape optimization , 2013 .

[12]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[13]  Peter Wriggers,et al.  2D contact smooth formulation based on the mortar method , 2012 .

[14]  John E. Dolbow,et al.  Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .

[15]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[16]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[17]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[18]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[19]  Wolfgang A. Wall,et al.  Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .

[20]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .

[21]  P. Wriggers,et al.  A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .

[22]  Javier Oliver,et al.  A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis , 2009 .

[23]  Samuel Geniaut,et al.  An X‐FEM approach for large sliding contact along discontinuities , 2009 .

[24]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[25]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[26]  Ronaldo I. Borja,et al.  A contact algorithm for frictional crack propagation with the extended finite element method , 2008 .

[27]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[28]  Anthony Gravouil,et al.  A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method , 2007 .

[29]  Juan José Ródenas,et al.  Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .

[30]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[31]  Peter Hansbo,et al.  Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .

[32]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[33]  Tod A. Laursen,et al.  Two dimensional mortar contact methods for large deformation frictional sliding , 2005 .

[34]  J. Dolbow,et al.  Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test , 2004 .

[35]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[36]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[37]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[38]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[39]  A. Curnier,et al.  Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment , 1999 .

[40]  Faker Ben Belgacem,et al.  The mortar finite element method for contact problems , 1998 .

[41]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[42]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[43]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .