Approximation algorithms for NP-hard optimization problems

In this chapter, we discuss approximation algorithms for optimization problems. An optimization problem consists in finding the best (cheapest, heaviest, etc.) element in a large set P, called the feasible region and usually specified implicitly, where the quality of elements of the set are evaluated using a function f(x), the objective function, usually something fairly simple. The element that minimizes (or maximizes) this function is said to be an optimal solution of the objective function at this element is the optimal value. optimal value = min{f(x) | x ∈ P} (1)

[1]  37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14-16 October, 1996 , 1996, FOCS.

[2]  V. Ramachandran Proceedings of the fourth annual ACM-SIAM symposium on Discrete algorithms , 1993 .

[3]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[4]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[5]  Éva Tardos,et al.  Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta, Georgia, USA , 1996, SODA.

[6]  Neal E. Young,et al.  Randomized rounding without solving the linear program , 1995, SODA '95.

[7]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[8]  Philip N. Klein,et al.  Faster Approximation Algorithms for the Unit Capacity Concurrent Flow Problem with Applications to Routing and Finding Sparse Cuts , 1994, SIAM J. Comput..

[9]  M. Yannakakis,et al.  Approximate Max--ow Min-(multi)cut Theorems and Their Applications , 1993 .

[10]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[11]  Prabhakar Raghavan,et al.  Probabilistic construction of deterministic algorithms: Approximating packing integer programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[12]  Philip N. Klein,et al.  Approximation Algorithms for Steiner and Directed Multicuts , 1997, J. Algorithms.

[13]  Philip N. Klein,et al.  An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.

[14]  David Shallcross,et al.  A commercial application of survivable network design: ITP/INPLANS CCS network topology analyzer , 1996, SODA '96.

[15]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Mark D. Hansen Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems , 1989, 30th Annual Symposium on Foundations of Computer Science.

[18]  David P. Williamson,et al.  A primal-dual approximation algorithm for generalized steiner network problems , 1993, Comb..

[19]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[20]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[21]  Guochuan Zhang,et al.  A constrained minimum spanning tree problem , 2000, Comput. Oper. Res..

[22]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[23]  David B. Shmoys,et al.  A unified approach to approximation algorithms for bottleneck problems , 1986, JACM.

[24]  Philip N. Klein,et al.  Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings , 1993 .

[25]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[26]  Samir Khuller,et al.  Improved approximation algorithms for uniform connectivity problems , 1995, STOC '95.

[27]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[28]  Tao Jiang,et al.  Linear approximation of shortest superstrings , 1991, STOC '91.

[29]  David B. Shmoys,et al.  Computing near-optimal solutions to combinatorial optimization problems , 1994, Combinatorial Optimization.

[30]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .

[31]  Dorit S. Hochbaum,et al.  Approximation Algorithms for the Set Covering and Vertex Cover Problems , 1982, SIAM J. Comput..

[32]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[33]  Jayadev Misra,et al.  A Constructive Proof of Vizing's Theorem , 1992, Inf. Process. Lett..

[34]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[35]  Joseph Naor,et al.  Divide-and-Conquer Approximation Algorithms via Spreading Metrics (Extended Abstract). , 1995, FOCS 1995.

[36]  Alex Zelikovsky,et al.  An 11/6-approximation algorithm for the network steiner problem , 1993, Algorithmica.

[37]  Paul D. Seymour,et al.  Packing directed circuits fractionally , 1995, Comb..

[38]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[39]  Neal E. Young,et al.  Data collection for the Sloan Digital Sky Survey—a network-flow heuristic , 1996, SODA '96.

[40]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[41]  Samir Khuller,et al.  Biconnectivity approximations and graph carvings , 1992, STOC '92.

[42]  J. Spencer Ten lectures on the probabilistic method , 1987 .

[43]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[44]  R. Ravi,et al.  The Constrained Minimum Spanning Tree Problem (Extended Abstract) , 1996, SWAT.

[45]  Tomasz Radzik Fast deterministic approximation for the multicommodity flow problem , 1995, SODA '95.

[46]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[47]  Naveen Garg,et al.  A scaling technique for better network design , 1994, SODA '94.

[48]  David R. Karger,et al.  On approximating the longest path in a graph , 1997, Algorithmica.

[49]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[50]  Piotr Berman,et al.  Improved approximations for the Steiner tree problem , 1992, SODA '92.

[51]  Samir Khuller,et al.  Approximation Algorithms for Graph Augmentation , 1992, ICALP.

[52]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[53]  35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994 , 1994, FOCS.

[54]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[55]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[56]  Jacques Stern,et al.  The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..

[57]  Ming Li,et al.  Towards a DNA sequencing theory (learning a string) , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[58]  Joseph Naor,et al.  Fast approximate graph partitioning algorithms , 1997, SODA '97.

[59]  R. Ravi,et al.  Many birds with one stone: multi-objective approximation algorithms , 1993, STOC '93.

[60]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[61]  David R. Karger,et al.  Adding multiple cost constraints to combinatorial optimization problems, with applications to multicommodity flows , 1995, STOC '95.

[62]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[63]  R. Ravi,et al.  When cycles collapse: A general approximation technique for constrained two-connectivity problems , 1992, IPCO.

[64]  Andreas Björklund Approximating Longest Path , 2003 .

[65]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[66]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[67]  Kenneth Clarkson Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1995. San Francisco, California, USA , 1995, SODA.

[68]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[69]  P. Raghavan Probabilistic construction of deterministic algorithms: Approximating packing integer programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[70]  Martin Fürer,et al.  Approximating the Minimum-Degree Steiner Tree to within One of Optimal , 1994, J. Algorithms.

[71]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[72]  Santosh S. Vempala,et al.  Improved approximation algorithms for biconnected subgraphs via better lower bounding techniques , 1993, SODA '93.

[73]  A. Zelikovsky Better approximation bounds for the network and Euclidean Steiner tree problems , 1996 .

[74]  Andrew V. Goldberg,et al.  Improved approximation algorithms for network design problems , 1994, SODA '94.

[75]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[76]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..