Possible Worlds Semantics for Credulous and Contraction Inference

A possible worlds semantics is suggested for a broad class of nonmonotonic inference relations, including not only traditional skeptical ones, but also credulous and contraction inference. The semantics could be used to provide a canonical framework for studying and comparing different kinds of nonmonotonic inference.

[1]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[2]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[3]  Claudette Cayrol,et al.  Non-monotonic Syntax-Based Entailment: A Classification of Consequence Relations , 1995, ECSQARU.

[4]  Alexander Bochman,et al.  Credulous Nonmonotonic Inference , 1999, IJCAI.

[5]  Angelika Kratzer,et al.  Partition and revision: The semantics of counterfactuals , 1981, J. Philos. Log..

[6]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[7]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[8]  Krzysztof R. Apt,et al.  Logics and Models of Concurrent Systems , 1989, NATO ASI Series.

[9]  Dov M. Gabbay,et al.  Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems , 1989, Logics and Models of Concurrent Systems.

[10]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[11]  Alexander Bochman,et al.  Belief contraction as nonmonotonic inference , 2000, Journal of Symbolic Logic.

[12]  David Makinson,et al.  General patterns in nonmonotonic reasoning , 1994 .

[13]  Johan van Benthem,et al.  Foundations of conditional logic , 1984, J. Philos. Log..

[14]  David Lewis,et al.  Ordering semantics and premise semantics for counterfactuals , 1981, J. Philos. Log..

[15]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[16]  Stefan Brass,et al.  On the Semantics of Supernormal Defaults , 1993, IJCAI.

[17]  Pierre Siegel,et al.  A Representation Theorem for Preferential Logics , 1996, KR.