Cannibalism and fratricide: mechanisms and raisons d'être

Cannibalism and fratricide refer to the killing of genetically identical cells (siblings) that was recently documented in two Gram-positive species, Bacillus subtilis and Streptococcus pneumoniae, respectively. Cannibalism occurs during the early stages of sporulation in B. subtilis, whereas fratricide occurs in S. pneumoniae during natural genetic transformation. Here, we compare and contrast these two phenomena and discuss whether these processes are fundamentally different from the more traditional 'chemical warfare' among bacteria.

[1]  Bernard Martin,et al.  Induction of competence regulons as a general response to stress in gram-positive bacteria. , 2006, Annual review of microbiology.

[2]  A. Grossman,et al.  Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation , 1994, Journal of bacteriology.

[3]  D. Dubnau,et al.  Competence for transformation: a matter of taste. , 1999, Current opinion in microbiology.

[4]  R. P. Ross,et al.  Food microbiology: Bacteriocins: developing innate immunity for food , 2005, Nature Reviews Microbiology.

[5]  J. García,et al.  The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains , 1999, Molecular microbiology.

[6]  Shane T. Jensen,et al.  The Spo0A regulon of Bacillus subtilis , 2003, Molecular microbiology.

[7]  Sébastien Guiral,et al.  Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Losick,et al.  Cannibalism by Sporulating Bacteria , 2003, Science.

[9]  J. Vederas,et al.  Structure of Subtilosin A, a Cyclic Antimicrobial Peptide from Bacillus subtilis with Unusual Sulfur to α-Carbon Cross-Links: Formation and Reduction of α-Thio-α-Amino Acid Derivatives†,‡ , 2004 .

[10]  J. Claverys,et al.  Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. , 2002, Frontiers in bioscience : a journal and virtual library.

[11]  Gary M. Dunny,et al.  Cell-cell signaling in bacteria , 1999 .

[12]  L. Håvarstein,et al.  Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Gu,et al.  A 3·1‐kb genomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae , 2001, Journal of applied microbiology.

[14]  M. Dworkin,et al.  Morphogenesis and developmental interactions in myxobacteria. , 1975, Science.

[15]  M. A. Strauch,et al.  Bacillus subtilis sporulation and stationary phase gene expression , 2002, Cellular and Molecular Life Sciences CMLS.

[16]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[17]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[18]  Masaya Fujita,et al.  High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis , 2005, Journal of bacteriology.

[19]  D. Morrison,et al.  Transient Association of an Alternative Sigma Factor, ComX, with RNA Polymerase during the Period of Competence for Genetic Transformation in Streptococcus pneumoniae , 2003, Journal of bacteriology.

[20]  R. Losick,et al.  A Three-Protein Signaling Pathway Governing Immunity to a Bacterial Cannibalism Toxin , 2006, Cell.

[21]  H. Engelberg-Kulka,et al.  Cannibals Defy Starvation and Avoid Sporulation , 2003, Science.

[22]  L. Aravind Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases , 2001 .

[23]  Arturo Zychlinsky,et al.  An Endonuclease Allows Streptococcus pneumoniae to Escape from Neutrophil Extracellular Traps , 2006, Current Biology.

[24]  R. Lopez,et al.  Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. , 1986, Gene.

[25]  G. Pozzi,et al.  Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone , 1996, Journal of bacteriology.

[26]  Sierd Bron,et al.  Stripping Bacillus: ComK auto‐stimulation is responsible for the bistable response in competence development , 2005, Molecular microbiology.

[27]  Ramy K. Aziz,et al.  DNase Expression Allows the Pathogen Group A Streptococcus to Escape Killing in Neutrophil Extracellular Traps , 2006, Current Biology.

[28]  D. Morrison,et al.  ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae , 2003, Molecular microbiology.

[29]  K. Gerdes,et al.  Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes , 2005, Nucleic acids research.

[30]  M. Perego,et al.  Pentapeptide regulation of aspartyl-phosphate phosphatases , 2001, Peptides.

[31]  L. Håvarstein,et al.  Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae , 1999, Molecular microbiology.

[32]  C. Dowson,et al.  Genetic Diversity of the Streptococcal Competence (com) Gene Locus , 1999, Journal of bacteriology.

[33]  T. Czárán,et al.  Chemical warfare between microbes promotes biodiversity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Tomasz,et al.  Ubiquitous distribution of the competence related genes comA and comC among isolates of Streptococcus pneumoniae. , 1997, Microbial drug resistance.

[35]  P. Stragier To Kill but Not Be Killed: A Delicate Balance , 2006, Cell.

[36]  Sébastien Guiral,et al.  Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells , 2004, Molecular microbiology.

[37]  J. Claverys,et al.  Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease , 1998, Molecular microbiology.

[38]  Oscar P Kuipers,et al.  Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis , 2005, Molecular microbiology.

[39]  Manfred Rohde,et al.  Glyceraldehyde-3-Phosphate Dehydrogenase of Streptococcus pneumoniae Is a Surface-Displayed Plasminogen-Binding Protein , 2004, Infection and Immunity.

[40]  L. Håvarstein,et al.  Choline-Binding Protein D (CbpD) in Streptococcus pneumoniae Is Essential for Competence-Induced Cell Lysis , 2005, Journal of bacteriology.

[41]  Michiel Kleerebezem,et al.  Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior , 2001, Peptides.

[42]  C. Moran,et al.  Spo0A-Dependent Activation of an Extended −10 Region Promoter in Bacillus subtilis , 2006, Journal of bacteriology.

[43]  A. Grossman Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. , 1995, Annual review of genetics.

[44]  D. Dubnau,et al.  Bistability in the Bacillus subtilis K‐state (competence) system requires a positive feedback loop , 2005, Molecular microbiology.

[45]  Oscar P Kuipers,et al.  Controlling competence in Bacillus subtilis: shared use of regulators. , 2003, Microbiology.

[46]  O. Kuipers,et al.  Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media , 2006, Journal of applied microbiology.

[47]  R. Losick,et al.  Bistability in bacteria , 2006, Molecular microbiology.

[48]  L. Håvarstein,et al.  Competence-Induced Cells of Streptococcuspneumoniae Lyse Competence-Deficient Cells of the SameStrain duringCocultivation , 2003, Journal of bacteriology.

[49]  K. Lewis,et al.  Programmed Death in Bacteria , 2000, Microbiology and Molecular Biology Reviews.

[50]  J. Hoch,et al.  Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay , 1991, Cell.

[51]  J. Hoch,et al.  Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis , 2000, Molecular microbiology.

[52]  J. Vederas,et al.  Genes of the sbo-alb Locus ofBacillus subtilis Are Required for Production of the Antilisterial Bacteriocin Subtilosin , 1999, Journal of bacteriology.

[53]  H. Engelberg-Kulka,et al.  Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria , 2006, PLoS genetics.

[54]  Masaya Fujita,et al.  Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. , 2005, Genes & development.

[55]  D. Morrison,et al.  Identification of a New Regulator inStreptococcus pneumoniae Linking Quorum Sensing to Competence for Genetic Transformation , 1999, Journal of bacteriology.

[56]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Claverys,et al.  Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA , 2004, Molecular microbiology.

[58]  Ingolf F. Nes,et al.  Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication , 2002, Antonie van Leeuwenhoek.

[59]  E. Gazit,et al.  The yefM-yoeB Toxin-Antitoxin Systems of Escherichia coli and Streptococcus pneumoniae: Functional and Structural Correlation , 2006, Journal of bacteriology.

[60]  J. Claverys,et al.  Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination‐mediated genetic plasticity? , 2000, Molecular microbiology.

[61]  T. Abee,et al.  The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner , 1991, Journal of bacteriology.

[62]  R. Fleischmann,et al.  Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays , 2004, Molecular microbiology.

[63]  D. Morrison,et al.  Two Distinct Functions of ComW in Stabilization and Activation of the Alternative Sigma Factor ComX in Streptococcus pneumoniae , 2005, Journal of bacteriology.

[64]  D. Hilbert,et al.  Sporulation of Bacillus subtilis. , 2004, Current opinion in microbiology.

[65]  H. Engelberg-Kulka,et al.  An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Rohde,et al.  α‐Enolase of Streptococcus pneumoniae is a plasmin(ogen)‐binding protein displayed on the bacterial cell surface , 2001, Molecular microbiology.

[67]  J. Errington Regulation of endospore formation in Bacillus subtilis , 2003, Nature Reviews Microbiology.

[68]  K. Gerdes,et al.  Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins , 2002, Molecular microbiology.

[69]  J. Kok,et al.  Requirement of Autolytic Activity for Bacteriocin-Induced Lysis , 2000, Applied and Environmental Microbiology.

[70]  K. Gerdes,et al.  The chromosomal relBE2 toxin–antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin–antitoxin interaction , 2006, Molecular microbiology.

[71]  J. Claverys,et al.  Antibiotic Stress Induces Genetic Transformability in the Human Pathogen Streptococcus pneumoniae , 2006, Science.

[72]  R. Hakenbeck,et al.  Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges , 1997, Journal of bacteriology.

[73]  J. Claverys,et al.  New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor , 2006, Molecular microbiology.