Design and fabrication of a low-cost, multispectral imaging system.

This paper reports the design and construction of a low-cost, multispectral imaging system using a single, large format CCD and an array of 18 individual lenses coupled to individual spectral filters. The system allows the simultaneous acquisition of 18 subimages, each with potentially different optical information. The subimages are combined to create a composite image, highlighting the desired spectral information. Because all the subimages are acquired simultaneously, the composite image shows no motion artifact. Although the present configuration uses 17 narrow bandpass optical filters to obtain multispectral information from a scene, the system is designed to be a general purpose, multiaperture platform, easily reconfigured for other multiaperture imaging modes.

[1]  David M. Haaland,et al.  Hyperspectral imaging of biological targets: the difference a high resolution spectral dimension and multivariate analysis can make , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[2]  Joan Batlle,et al.  A New FPGA/DSP-Based Parallel Architecture for Real-Time Image Processing , 2002, Real Time Imaging.

[3]  A. Weisberg,et al.  Spectral angle automatic cluster routine (SAALT): an unsupervised multispectral clustering algorithm , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[4]  R. Barnard,et al.  High-resolution iris image reconstruction from low-resolution imagery , 2006, SPIE Optics + Photonics.

[5]  J.C. Ramella-Roman,et al.  Spectroscopic Measurements of Oxygen Saturation in the Retina , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  E. Preston,et al.  Development of a field-portable imaging system for scene classification using multispectral data fusion algorithms , 1994 .

[7]  Arun Ross,et al.  Multispectral Iris Analysis: A Preliminary Study51 , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[8]  Vasilis Ntziachristos,et al.  Multispectral imaging using multiple-bandpass filters. , 2008, Optics letters.

[9]  E. M. Winter Methods for Determining Best Multispectral Bands Using Hyperspectral Data , 2007 .

[10]  Qian Du,et al.  Automatic target recognition for hyperspectral imagery using high-order statistics , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Jun Tanida,et al.  Multispectral imaging using compact compound optics. , 2004, Optics express.

[12]  Mukire J. Wabomba,et al.  Remote Detection of Volatile Organic Compounds by Passive Multispectral Infrared Imaging Measurements , 2007, Applied spectroscopy.

[13]  Tuan Vo-Dinh,et al.  A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest. , 2004, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[14]  Chein-I Chang,et al.  Unsupervised interference rejection approach to target detection and classification for hyperspectral imagery , 1998 .

[15]  Michael G. Sowa,et al.  Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis , 1998, IEEE Transactions on Medical Imaging.

[16]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[17]  Hao Chen,et al.  Forest information from hyperspectral sensing , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.