Quantum Asymptotic Spectra of Graphs and Non-Commutative Graphs, and Quantum Shannon Capacities

We study quantum versions of the Shannon capacity of graphs and non-commutative graphs. We introduce the asymptotic spectrum of graphs with respect to quantum and entanglement-assisted homomorphisms, and we introduce the asymptotic spectrum of non-commutative graphs with respect to entanglement-assisted homomorphisms. We apply Strassen’s spectral theorem (J. Reine Angew. Math., 1988) in order to obtain dual characterizations of the corresponding Shannon capacities and asymptotic preorders in terms of their asymptotic spectra. This work extends the study of the asymptotic spectrum of graphs initiated by Zuiddam (Combinatorica, 2019) to the quantum domain. We then exhibit spectral points in the new quantum asymptotic spectra and discuss their relations with the asymptotic spectrum of graphs. In particular, we prove that the (fractional) real and complex Haemers bounds upper bound the quantum Shannon capacity, which is defined as the regularization of the quantum independence number (Mančinska and Roberson, J. Combin. Theory Ser. B, 2016), and that the fractional real and complex Haemers bounds are elements in the quantum asymptotic spectrum of graphs. This is in contrast to the Haemers bounds defined over certain finite fields, which can be strictly smaller than the quantum Shannon capacity. Moreover, since the Haemers bound can be strictly smaller than the Lovász theta function (Haemers, IEEE Trans. Inf. Theory, 1979), we find that the quantum Shannon capacity and the Lovász theta function do not coincide. As a consequence, two well-known conjectures in quantum information theory, namely: 1) the entanglement-assisted zero-error capacity of a classical channel is equal to the Lovász theta function and 2) maximally entangled states and projective measurements are sufficient to achieve the entanglement-assisted zero-error capacity, cannot both be true.

[1]  Jianxin Chen,et al.  Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel , 2009, IEEE Transactions on Information Theory.

[2]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[3]  TOBIAS FRITZ,et al.  Resource convertibility and ordered commutative monoids , 2015, Mathematical Structures in Computer Science.

[4]  Simone Severini,et al.  New Separations in Zero-Error Channel Capacity Through Projective Kochen–Specker Sets and Quantum Coloring , 2013, IEEE Transactions on Information Theory.

[5]  Alexander Schrijver,et al.  New lower bound on the Shannon capacity of C7 from circular graphs , 2019, Inf. Process. Lett..

[6]  R. Lathe Phd by thesis , 1988, Nature.

[7]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[8]  Dan Stahlke,et al.  Quantum Zero-Error Source-Channel Coding and Non-Commutative Graph Theory , 2016, IEEE Transactions on Information Theory.

[9]  V. Strassen The asymptotic spectrum of tensors. , 1988 .

[10]  Vern I. Paulsen,et al.  Lov\'asz theta type norms and Operator Systems , 2014, 1412.7101.

[11]  Robert W. Spekkens,et al.  Optimization of coherent attacks in generalizations of the BB84 quantum bit commitment protocol , 2002, Quantum Inf. Comput..

[12]  Péter Vrana,et al.  The Asymptotic Spectrum of LOCC Transformations , 2018, IEEE Transactions on Information Theory.

[13]  Debbie W. Leung,et al.  Improving zero-error classical communication with entanglement , 2009, Physical review letters.

[14]  Runyao Duan,et al.  Separation Between Quantum Lovász Number and Entanglement-Assisted Zero-Error Classical Capacity , 2016, IEEE Transactions on Information Theory.

[15]  Volker Strassen,et al.  The asymptotic spectrum of tensors and the exponent of matrix multiplication , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[16]  V. Strassen Relative bilinear complexity and matrix multiplication. , 1987 .

[17]  Simone Severini,et al.  Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.

[18]  Matthias Christandl,et al.  Universal points in the asymptotic spectrum of tensors , 2017, STOC.

[19]  Harry Buhrman,et al.  Entanglement-Assisted Zero-Error Source-Channel Coding , 2015, IEEE Transactions on Information Theory.

[20]  M. Rosenfeld ON A PROBLEM OF C. E. SHANNON IN GRAPH THEORY , 1967 .

[21]  B. M. Fulk MATH , 1992 .

[22]  Runyao Duan,et al.  A new property of the Lovász number and duality relations between graph parameters , 2015, Discret. Appl. Math..

[23]  V. Strassen,et al.  Degeneration and complexity of bilinear maps: Some asymptotic spectra. , 1991 .

[24]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[25]  Jeroen Zuiddam,et al.  The Asymptotic Spectrum of Graphs and the Shannon Capacity , 2018, Combinatorica.

[26]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[27]  Jeroen Zuiddam,et al.  Algebraic complexity, asymptotic spectra and entanglement polytopes , 2018 .

[28]  D. Leung,et al.  Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels , 2010, Communications in Mathematical Physics.

[29]  Anna Blasiak A Graph-Theoretic Approach To Network Coding , 2013 .

[30]  David E. Roberson,et al.  Bounds on Entanglement-Assisted Source-Channel Coding via the Lovász \(\vartheta \) Number and Its Variants , 2013, IEEE Transactions on Information Theory.

[31]  Cambridge University Press , 2021 .

[32]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[33]  Willem H. Haemers,et al.  On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.

[34]  David E. Roberson,et al.  Orthogonal Representations, Projective Rank, and Fractional Minimum Positive Semidefinite Rank: Connections and New Directions , 2015, 1502.00016.

[35]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[36]  David E. Roberson,et al.  Bounds on Entanglement Assisted Source-channel Coding Via the Lovász Theta Number and Its Variants , 2014, TQC.

[37]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[38]  Boris Bukh,et al.  On a Fractional Version of Haemers’ Bound , 2019, IEEE Transactions on Information Theory.

[39]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[40]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[41]  Runyao Duan,et al.  Super-Activation of Zero-Error Capacity of Noisy Quantum Channels , 2009, 0906.2527.

[42]  David E. Roberson,et al.  Quantum homomorphisms , 2016, J. Comb. Theory, Ser. B.

[43]  Harry Buhrman,et al.  Violating the Shannon capacity of metric graphs with entanglement , 2012, Proceedings of the National Academy of Sciences.

[44]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[45]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[46]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[47]  Salman Beigi,et al.  Entanglement-assisted zero-error capacity is upper bounded by the Lovasz theta function , 2010, ArXiv.

[48]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[49]  Ina Ruck,et al.  USA , 1969, The Lancet.