Intracellular hydrogelation of small molecules inhibits bacterial growth.

[1]  Bing Xu,et al.  In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a beta-amino acid derivative. , 2007, Small.

[2]  Bing Xu,et al.  Using β-lactamase to trigger supramolecular hydrogelation , 2007 .

[3]  S. Mann,et al.  Hybrid Biocomposites Based on Calcium Phosphate Mineralization of Self‐Assembled Supramolecular Hydrogels , 2006 .

[4]  E. W. Meijer,et al.  Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly , 2006, Science.

[5]  Meital Reches,et al.  Rigid, Self‐Assembled Hydrogel Composed of a Modified Aromatic Dipeptide , 2006 .

[6]  A. Miller,et al.  Nanostructured Hydrogels for Three‐Dimensional Cell Culture Through Self‐Assembly of Fluorenylmethoxycarbonyl–Dipeptides , 2006 .

[7]  Bing Xu,et al.  Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. , 2006, Journal of the American Chemical Society.

[8]  Bing Xu,et al.  Supramolecular hydrogels based on β-amino acid derivatives , 2006 .

[9]  Rein V Ulijn,et al.  Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. , 2006, Journal of the American Chemical Society.

[10]  Bing Xu,et al.  Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. , 2005, Chemical communications.

[11]  Bing Xu,et al.  A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. , 2004, Chemical communications.

[12]  H. Gu,et al.  Enzymatic Formation of Supramolecular Hydrogels , 2004 .

[13]  Krista L. Niece,et al.  Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers , 2004, Science.

[14]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical reviews.

[15]  P. Messersmith,et al.  Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. , 2003, Journal of the American Chemical Society.

[16]  J. Tiller Lokale Anreicherung von Wirkstoffen durch Hydrogelierung , 2003 .

[17]  J. Tiller,et al.  Increasing the local concentration of drugs by hydrogel formation. , 2003, Angewandte Chemie.

[18]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[19]  Bing Xu,et al.  Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. , 2002, Journal of the American Chemical Society.

[20]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[21]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[22]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[23]  F. Blattner,et al.  Global regulation of gene expression in Escherichia coli , 1993, Journal of bacteriology.

[24]  Richard G. Weiss,et al.  Molecular Gels: Materials with Self-Assembled Fibrillar Networks , 2005 .

[25]  I. Hamachi,et al.  Semi-wet peptide/protein array using supramolecular hydrogel , 2004, Nature materials.