AIMTOR, a BRET biosensor for live imaging, reveals subcellular mTOR signaling and dysfunctions

[1]  N. Linck,et al.  Procedures for Culturing and Genetically Manipulating Murine Hippocampal Postnatal Neurons , 2020, Frontiers in Synaptic Neuroscience.

[2]  C. White,et al.  NanoBRET: The Bright Future of Proximity-Based Assays , 2019, Front. Bioeng. Biotechnol..

[3]  L. Pacini,et al.  Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism , 2019, Translational Psychiatry.

[4]  Shuo Lin,et al.  mTOR controls embryonic and adult myogenesis via mTORC1 , 2019, Development.

[5]  G. Bloom,et al.  A novel lysosome‐to‐mitochondria signaling pathway disrupted by amyloid‐β oligomers , 2018, The EMBO journal.

[6]  P. Houghton,et al.  ETV7 is an essential component of a rapamycin-insensitive mTOR complex in cancer , 2018, Science Advances.

[7]  F. Casas,et al.  Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress , 2018, BMC Biology.

[8]  K. Sumiyama,et al.  A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging , 2018, Scientific Reports.

[9]  Yan Chastagnier,et al.  Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer , 2018, Front. Comput. Neurosci..

[10]  Sohum Mehta,et al.  Live‐cell imaging of cell signaling using genetically encoded fluorescent reporters , 2018, The FEBS journal.

[11]  T. Weichhart mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review , 2017, Gerontology.

[12]  D. Sabatini,et al.  The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. , 2017, Cell metabolism.

[13]  M. Kundu,et al.  Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. , 2017, American journal of physiology. Cell physiology.

[14]  David M. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[15]  A. González,et al.  Nutrient sensing and TOR signaling in yeast and mammals , 2017, The EMBO journal.

[16]  R. Zoncu,et al.  Dynamics of mTORC1 activation in response to amino acids , 2016, eLife.

[17]  V. Ollendorff,et al.  Fast and high resolution single-cell BRET imaging , 2016, Scientific Reports.

[18]  R. Loewith,et al.  TORC2 Structure and Function. , 2016, Trends in biochemical sciences.

[19]  Chengqun Huang,et al.  Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts , 2015, Autophagy.

[20]  L. Cantley,et al.  Regulation of mTORC1 by PI3K signaling. , 2015, Trends in cell biology.

[21]  Xin Zhou,et al.  Dynamic Visualization of mTORC1 Activity in Living Cells. , 2015, Cell reports.

[22]  J. Armstrong,et al.  Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity , 2015, The Journal of Neuroscience.

[23]  F. Britto,et al.  REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. , 2014, American journal of physiology. Endocrinology and metabolism.

[24]  J. Lipton,et al.  The Neurology of mTOR , 2014, Neuron.

[25]  L. Fagni,et al.  REV, A BRET-Based Sensor of ERK Activity , 2013, Front. Endocrinol..

[26]  M. Hall,et al.  mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology , 2013, Proceedings of the National Academy of Sciences.

[27]  D. Sabatini,et al.  mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin , 2013, Science.

[28]  Bradley P. Coe,et al.  Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders , 2012, Science.

[29]  B. Vernus,et al.  Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival , 2012, Journal of Cell Science.

[30]  L. Parada,et al.  PTEN signaling in autism spectrum disorders , 2012, Current Opinion in Neurobiology.

[31]  Roberto Zoncu,et al.  Amino acids and mTORC1: from lysosomes to disease. , 2012, Trends in molecular medicine.

[32]  Brock F. Binkowski,et al.  Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate , 2012, ACS chemical biology.

[33]  T. Walther,et al.  The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis , 2012, Science Signaling.

[34]  Anne-Marie Le Sourd,et al.  Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2 , 2012, Nature.

[35]  Kazuhiro Aoki,et al.  Development of an optimized backbone of FRET biosensors for kinases and GTPases , 2011, Molecular biology of the cell.

[36]  M. Hall,et al.  Rapamycin passes the torch: a new generation of mTOR inhibitors , 2011, Nature Reviews Drug Discovery.

[37]  Mark F. Bear,et al.  Mutations causing syndromic autism define an axis of synaptic pathophysiology , 2011, Nature.

[38]  D. Sabatini,et al.  The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling , 2011, Science.

[39]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[40]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[41]  E. Klann,et al.  mTOR signaling: At the crossroads of plasticity, memory and disease , 2010, Trends in Neurosciences.

[42]  E. Klann,et al.  Dysregulation of mTOR Signaling in Fragile X Syndrome , 2010, The Journal of Neuroscience.

[43]  B. Manning,et al.  A complex interplay between Akt, TSC2 and the two mTOR complexes. , 2009, Biochemical Society transactions.

[44]  P. Bolton,et al.  Characterization of Autism in Young Children With Tuberous Sclerosis Complex , 2008, Journal of child neurology.

[45]  K. M. Huber,et al.  Homer Interactions Are Necessary for Metabotropic Glutamate Receptor-Induced Long-Term Depression and Translational Activation , 2008, The Journal of Neuroscience.

[46]  R. Roberts Faculty Opinions recommendation of mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. , 2007 .

[47]  V. Mootha,et al.  mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex , 2007, Nature.

[48]  B. Wattenberg,et al.  An Artificial Mitochondrial Tail Signal/Anchor Sequence Confirms a Requirement for Moderate Hydrophobicity for Targeting , 2007, Bioscience reports.

[49]  B. Vernus,et al.  Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells , 2006, Journal of cellular physiology.

[50]  Y. Benjamini,et al.  Adaptive linear step-up procedures that control the false discovery rate , 2006 .

[51]  Richard Paylor,et al.  Dynamic Translational and Proteasomal Regulation of Fragile X Mental Retardation Protein Controls mGluR-Dependent Long-Term Depression , 2006, Neuron.

[52]  D. Nelson,et al.  The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo , 2006, Neurobiology of Disease.

[53]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[54]  D. Sabatini,et al.  Growing roles for the mTOR pathway. , 2005, Current opinion in cell biology.

[55]  J. Avruch,et al.  Glutamatergic Regulation of the p70S6 Kinase in Primary Mouse Neurons* , 2005, Journal of Biological Chemistry.

[56]  Y. Benjamini,et al.  Quantitative Trait Loci Analysis Using the False Discovery Rate , 2005, Genetics.

[57]  In-Hyun Park,et al.  Mammalian Target of Rapamycin (mTOR) Signaling Is Required for a Late-stage Fusion Process during Skeletal Myotube Maturation*[boxs] , 2005, Journal of Biological Chemistry.

[58]  Eric Klann,et al.  Activation of the Phosphoinositide 3-kinase–akt–mammalian Target of Rapamycin Signaling Pathway Is Required for Metabotropic Glutamate Receptor-dependent Long-term Depression , 2022 .

[59]  T. Issad,et al.  The use of resonance energy transfer in high-throughput screening: BRET versus FRET. , 2002, Trends in pharmacological sciences.

[60]  Mark F. Bear,et al.  Altered synaptic plasticity in a mouse model of fragile X mental retardation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Kasuga,et al.  Regulation of eIF-4E BP1 Phosphorylation by mTOR* , 1997, The Journal of Biological Chemistry.

[62]  S. Schreiber,et al.  Control of p70 S6 kinase by kinase activity of FRAP in vivo , 1995, Nature.

[63]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..