The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

Abstract A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β -delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β -delayed neutron emission are mentioned.

[1]  P. Moldauer,et al.  Statistics and the average cross section , 1980 .

[2]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[3]  C. Y. Fu,et al.  Consistent nuclear model for compound and precompound reactions with conservation of angular momentum. [14. 6 MeV] , 1980 .

[4]  E. Rost,et al.  The Distorted-Wave Born Approximation , 1993 .

[5]  Arjan J. Koning,et al.  A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential , 2004 .

[6]  Go Chiba,et al.  JENDL Actinoid File 2008 , 2009 .

[7]  Chadwick,et al.  Pauli-blocking in the quasideuteron model of photoabsorption. , 1991, Physical review. C, Nuclear physics.

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  Yutaka Nakajima,et al.  Fermi-Gas Model Parametrization of Nuclear Level Density. , 1994 .

[10]  A. V. Ignatyuk,et al.  Phenomenological description of energy dependence of the level density parameter , 1975 .

[11]  G. R. Satchler The distorted waves theory of direct nuclear reactions , 1964 .

[12]  R. Capote,et al.  Dispersive coupled-channel analysis of nucleon scattering from 232 Th up to 200 MeV , 2005 .

[13]  A. Iwamoto,et al.  Pre-equilibrium emission of light composite particles in the framework of the exciton model , 1983 .

[14]  K. Shibata,et al.  Coupled-channels Optical Model Analyses of Nucleon-induced Reactions for Medium and Heavy Nuclei in the Energy Region from 1 keV to 200 MeV , 2007 .

[15]  P. Obložinský,et al.  Handbook for calculations of nuclear reaction data, RIPL-2 (Reference Input Parameter Library-2) , 2006 .

[16]  H. Nakashima,et al.  Light Charged-Particle Production in Proton-Induced Reactions on 12C, 27Al, 58Ni, 90Zr, 197Au, and 209Bi at 42 and 68 MeV , 2002 .

[17]  H. Takano,et al.  Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3 , 2002 .

[18]  O. Iwamoto Extension of a nuclear reaction calculation code CCONE toward higher incident energies — multiple preequilibrium emission, and spectrum in laboratory system , 2013 .

[19]  O. A. Wasson,et al.  Measurement and model analysis of (n,xα) cross sections for Cr, Fe, 59Co, and 58,60Ni from threshold energy to 150 MeV , 2012 .

[20]  J. Levinger Nuclear photo-disintegration , 1960 .

[21]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[22]  N. Iwamoto Evaluation of neutron nuclear data for Technetium-99 , 2012 .

[23]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[24]  C. Kalbach Consistent exciton model calculations with shell structure, pairing and isospin effects , 1995 .

[25]  O. Iwamoto,et al.  Verification of the surrogate ratio method , 2010, 1001.5114.

[26]  J. S. Levinger,et al.  THE HIGH ENERGY NUCLEAR PHOTOEFFECT , 1951 .

[27]  W. B. Wilson,et al.  Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation-Hauser-Feshbach model , 2008 .

[28]  C. Kalbach The Griffin model, complex particles and direct nuclear reactions , 1977 .

[29]  Philip F. Rose,et al.  ENDF-6 Formats Manual , 1997 .

[30]  Keiichi Shibata,et al.  JENDL: Nuclear databases for science and technology , 2013 .

[31]  N. Iwamoto New Evaluation of Neutron Nuclear Data for Zinc Isotopes , 2007 .

[32]  Mark B. Chadwick,et al.  Comprehensive nuclear model calculations: Introduction to the theory and use of the GNASH code , 1992 .

[33]  M. W. Herman,et al.  EMPIRE: Nuclear Reaction Model Code System for Data Evaluation , 2007 .

[34]  S. Kailas,et al.  RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations , 2009 .

[35]  P. Möller,et al.  New developments in the calculation of β-strength functions , 1990 .

[36]  Sin-iti Igarasi,et al.  Modified Methods of Neutron Cross-Section Calculations , 1975 .

[37]  A. Iwamoto,et al.  Mechanism of cluster emission in nucleon-induced preequilibrium reactions , 1982 .

[38]  Yasuyuki Kikuchi,et al.  Second Version of Japanese Evaluated Nuclear Data Library (JENDL-2) , 1985 .

[39]  Herman Feshbach,et al.  The Inelastic Scattering of Neutrons , 1952 .

[40]  B. Pritychenko,et al.  Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC) , 2014, 2002.07114.

[41]  S. Goriely,et al.  Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section , 2002, nucl-th/0203074.

[42]  K. Shibata Evaluation of neutron nuclear data on iodine isotopes , 2015 .

[43]  Patrick Talou,et al.  Monte Carlo Simulation for Particle and γ-Ray Emissions in Statistical Hauser-Feshbach Model , 2010 .

[44]  G. Reffo,et al.  Some properties of the width fluctuation factor , 1977 .

[45]  H. Gruppelaar,et al.  Analysis of continuum gamma-ray emission in precompound-decay reactions , 1985 .

[46]  A. Bohr,et al.  Role of symmetry of the nuclear shape in rotational contributions to nuclear level densities , 1974 .

[47]  V. Avrigeanu,et al.  Complementary optical-potential analysis of α-particle elastic scattering and induced reactions at low energies , 2008, 0808.0566.

[48]  Osamu Iwamoto,et al.  Development of a Comprehensive Code for Nuclear Data Evaluation, CCONE, and Validation Using Neutron-Induced Cross Sections for Uranium Isotopes , 2007 .

[49]  D. Madland,et al.  Prompt fission neutron spectra and average prompt neutron multiplicities , 1982 .

[50]  Said F. Mughabghab,et al.  Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z=1-100 , 2006 .

[51]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[52]  O. Iwamoto,et al.  Study of Beta-Delayed Neutron with Proton-Neutron QRPA Plus Statistical Model , 2015 .

[53]  Osamu Iwamoto Progress in Developing Nuclear Reaction Calculation Code CCONE for High Energy Nuclear Data Evaluation , 2014 .

[54]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[55]  O. Iwamoto,et al.  Spin-dependent observables in surrogate reactions , 2011, 1105.3278.

[56]  N. Iwamoto Neutron Nuclear Data Evaluation of Cesium Isotopes for JENDL-4.0 , 2011 .

[57]  Foster,et al.  Preequilibrium (p,n) reaction as a probe for the effective nucleon-nucleon interaction in multistep direct processes. , 1990, Physical review. C, Nuclear physics.

[58]  George F. Bertsch,et al.  Direct Nuclear Reactions , 1984 .

[59]  Kalbach Surface effects in the exciton model of preequilibrium nuclear reactions. , 1985, Physical review. C, Nuclear physics.

[60]  P. Möller,et al.  Atomic masses and nuclear ground-state deformations calculated with a new macroscopic-microscopic model , 1981 .

[61]  K. Shibata Evaluation of neutron nuclear data on tellurium isotopes , 2014 .

[62]  Vladimir A. Plujko,et al.  Testing and Improvements of Gamma-Ray Strength Functions for Nuclear Model Calculations , 1999, nucl-th/9907111.

[63]  A. G. W. Cameron,et al.  A COMPOSITE NUCLEAR-LEVEL DENSITY FORMULA WITH SHELL CORRECTIONS , 1965 .

[64]  Uhl,et al.  Test of gamma-ray strength functions in nuclear reaction model calculations. , 1990, Physical review. C, Nuclear physics.

[65]  O. Iwamoto Systematics of Prompt Fission Neutron Spectra , 2008 .

[66]  Walker,et al.  Systematics of fission fragment total kinetic energy release. , 1985, Physical review. C, Nuclear physics.

[67]  Kalbach Two-component exciton model: Basic formalism away from shell closures. , 1986, Physical review. C, Nuclear physics.

[68]  Taro Tamura,et al.  ANALYSES OF THE SCATTERING OF NUCLEAR PARTICLES BY COLLECTIVE NUCLEI IN TERMS OF THE COUPLED-CHANNEL CALCULATION , 1965 .

[69]  John Archibald Wheeler,et al.  NUCLEAR CONSTITUTION AND THE INTERPRETATION OF FISSION PHENOMENA , 1953 .