Ordinal Regression Models in Psychology: A Tutorial

Ordinal variables, although extremely common in psychology, are almost exclusively analyzed with statistical models that falsely assume them to be metric. This practice can lead to distorted effect-size estimates, inflated error rates, and other problems. We argue for the application of ordinal models that make appropriate assumptions about the variables under study. In this Tutorial, we first explain the three major classes of ordinal models: the cumulative, sequential, and adjacent-category models. We then show how to fit ordinal models in a fully Bayesian framework with the R package brms, using data sets on opinions about stem-cell research and time courses of marriage. The appendices provide detailed mathematical derivations of the models and a discussion of censored ordinal models. Compared with metric models, ordinal models provide better theoretical interpretation and numerical inference from ordinal data, and we recommend their widespread adoption in psychology.

[1]  Przemyslaw Biecek,et al.  Explanations of model predictions with live and breakDown packages , 2018, R J..

[2]  Torrin M. Liddell,et al.  Bayesian data analysis for newcomers , 2018, Psychonomic bulletin & review.

[3]  Torrin M. Liddell,et al.  Analyzing Ordinal Data with Metric Models: What Could Possibly Go Wrong? , 2017, Journal of Experimental Social Psychology.

[4]  Paul-Christian Bürkner,et al.  Advanced Bayesian Multilevel Modeling with the R Package brms , 2017, R J..

[5]  Torrin M. Liddell,et al.  The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective , 2016, Psychonomic bulletin & review.

[6]  Scott D. Brown,et al.  A simple introduction to Markov Chain Monte–Carlo sampling , 2016, Psychonomic bulletin & review.

[7]  Paul-Christian Bürkner,et al.  brms: An R Package for Bayesian Multilevel Models Using Stan , 2017 .

[8]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[9]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[10]  Christopher Eager,et al.  Mixed Effects Models are Sometimes Terrible , 2017, 1701.04858.

[11]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[12]  Peter Baumgartner,et al.  R – Data Science , 2017 .

[13]  Jeffrey N. Rouder,et al.  The fallacy of placing confidence in confidence intervals , 2015, Psychonomic bulletin & review.

[14]  Richard McElreath,et al.  Statistical Rethinking: A Bayesian Course with Examples in R and Stan , 2015 .

[15]  Jeffrey N. Rouder,et al.  Robust misinterpretation of confidence intervals , 2013, Psychonomic bulletin & review.

[16]  J. Guzmán Regression Models for Categorical Dependent Variables Using Stata , 2013 .

[17]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[18]  Scott L. Thomas,et al.  Multilevel Modeling of Categorical Outcomes Using IBM SPSS , 2012 .

[19]  Raymond J. Adams,et al.  The Rasch Rating Model and the Disordered Threshold Controversy , 2012 .

[20]  Jay Teachman,et al.  Modeling Repeatable Events Using Discrete-Time Data: Predicting Marital Dissolution. , 2011 .

[21]  Ivy Liu,et al.  Analysis of Ordinal Categorical Data, 2nd edn by Alan Agresti , 2011 .

[22]  J. Gibbons,et al.  Nonparametric Statistical Inference , 2020, International Encyclopedia of Statistical Science.

[23]  A. Agresti Analysis of Ordinal Categorical Data: Agresti/Analysis , 2010 .

[24]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[25]  Boediono,et al.  Applied Rasch Measurement: A Book of Exemplars , 2005 .

[26]  D. Andrich The Rasch Model Explained , 2005 .

[27]  J. S. Long,et al.  Regression models for categorical dependent variables using Stata, 2nd Edition , 2005 .

[28]  L. Andries van der Ark,et al.  Relationships and Properties of Polytomous Item Response Theory Models , 2001 .

[29]  R. Bender,et al.  Calculating ordinal regression models in SAS and S-plus , 2000 .

[30]  Antoine Guisan,et al.  Ordinal response regression models in ecology. , 2000 .

[31]  D. Kleinbaum,et al.  Regression models for ordinal responses: a review of methods and applications. , 1997, International journal of epidemiology.

[32]  Cornelis A.W. Glas,et al.  A Steps Model to Analyze Partial Credit , 1997 .

[33]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[34]  F. Samejima Graded Response Model , 1997 .

[35]  Gerhard Tutz,et al.  Sequential Models for Ordered Responses , 1997 .

[36]  Fumiko Samejima,et al.  Acceleration model in the heterogeneous case of the general graded response model , 1995 .

[37]  Gideon J. Mellenbergh,et al.  Conceptual Notes on Models for Discrete Polytomous Item Responses , 1995 .

[38]  G. H. Fischer,et al.  The Derivation of Polytomous Rasch Models , 1995 .

[39]  Mark R. Wilson,et al.  Marginal Maximum Likelihood Estimation for the Ordered Partition Model , 1993 .

[40]  Mark R. Wilson,et al.  The Ordered artition Model: An Extension of the Partial Credit Model , 1992 .

[41]  G. Tutz Sequential item response models with an ordered response , 1990 .

[42]  F. Harrell,et al.  Partial Proportional Odds Models for Ordinal Response Variables , 1990 .

[43]  J. N. S. Matthews,et al.  The equivalence of two models for ordinal data , 1985 .

[44]  G. Masters A rasch model for partial credit scoring , 1982 .

[45]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[46]  Stephen E. Fienberg,et al.  The analysis of cross-classified categorical data , 1980 .

[47]  D. Andrich A rating formulation for ordered response categories , 1978 .

[48]  D. Andrich Application of a Psychometric Rating Model to Ordered Categories Which Are Scored with Successive Integers , 1978 .

[49]  Erling B. Andersen,et al.  Sufficient statistics and latent trait models , 1977 .

[50]  E. B. Andersen,et al.  CONDITIONAL INFERENCE FOR MULTIPLE‐CHOICE QUESTIONNAIRES , 1973 .

[51]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[52]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[53]  Strother H. Walker,et al.  Estimation of the probability of an event as a function of several independent variables. , 1967, Biometrika.

[54]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[55]  S S Stevens,et al.  On the Theory of Scales of Measurement. , 1946, Science.

[56]  D.,et al.  Regression Models and Life-Tables , 2022 .