The semistrong limit of multipulse interaction in a thermally driven optical system

Abstract We consider the semistrong limit of pulse interaction in a thermally driven, parametrically forced, nonlinear Schrodinger (TDNLS) system modeling pulse interaction in an optical cavity. The TDNLS couples a parabolic equation to a hyperbolic system, and in the semistrong scaling we construct pulse solutions which experience both short-range, tail–tail interactions and long-range thermal coupling. We extend the renormalization group (RG) methods used to derive semistrong interaction laws in reaction–diffusion systems to the hyperbolic–parabolic setting of the TDNLS system. A key step is to capture the singularly perturbed structure of the semigroup through the control of the commutator of the resolvent and a re-scaling operator. The RG approach reduces the pulse dynamics to a closed system of ordinary differential equations for the pulse locations.

[1]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[2]  Wentao Sun,et al.  The Slow Dynamics of Two-Spike Solutions for the Gray-Scott and Gierer-Meinhardt Systems: Competition and Oscillatory Instabilities , 2005, SIAM J. Appl. Dyn. Syst..

[3]  Arjen Doelman,et al.  Semistrong Pulse Interactions in a Class of Coupled Reaction-Diffusion Equations , 2003, SIAM J. Appl. Dyn. Syst..

[4]  Arjen Doelman,et al.  Slowly Modulated Two-Pulse Solutions in the Gray--Scott Model I: Asymptotic Construction and Stability , 2000, SIAM J. Appl. Math..

[5]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[6]  Richard O. Moore,et al.  Renormalization group reduction of pulse dynamics in thermally loaded optical parametric oscillators , 2005 .

[7]  Shin-Ichiro Ei,et al.  The Motion of Weakly Interacting Pulses in Reaction-Diffusion Systems , 2002 .

[8]  Björn Sandstede,et al.  Defects in Oscillatory Media: Toward a Classification , 2004, SIAM J. Appl. Dyn. Syst..

[9]  Robert Gardner,et al.  Large stable pulse solutions in reaction-diffusion equations , 2001 .

[10]  Björn Sandstede,et al.  Stability of multiple-pulse solutions , 1998 .

[11]  Genqi Xu,et al.  On the spectrum determined growth assumption and the perturbation ofC0 semigroups , 2001 .

[12]  Daishin Ueyama,et al.  Spatio-temporal chaos for the Gray—Scott model , 2001 .

[13]  Todd Kapitula,et al.  Stability of bright solitary-wave solutions to perturbed nonlinear Schro , 1998 .

[14]  Keith Promislow,et al.  A Renormalization Method for Modulational Stability of Quasi-Steady Patterns in Dispersive Systems , 2002, SIAM J. Math. Anal..

[15]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[16]  Masayasu Mimura,et al.  Singular limit analysis of stability of traveling wave solutions in bistable reaction-diffusion systems , 1990 .

[17]  Bifurcation and asymptotic stability in the large detuning limit of the optical parametric oscillator , 2000 .

[18]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[19]  Keith Promislow,et al.  Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized Gierer-Meinhardt Model , 2007, SIAM J. Math. Anal..

[21]  A Sheppard,et al.  Stable topological spatial solitons in optical parametric oscillators. , 1997, Optics letters.

[22]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[23]  Michael J. Ward,et al.  Hopf bifurcation of spike solutions for the shadow Gierer–Meinhardt model , 2003, European Journal of Applied Mathematics.

[24]  S. Trillo,et al.  Excitation and bistability of self-trapped signal beams in optical parametric oscillators. , 1998, Optics letters.

[25]  Masayasu Mimura,et al.  Pulse–pulse interaction in reaction–diffusion systems , 2002 .

[26]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .