Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging.

[1]  Wei Feng,et al.  Cubic sub-20 nm NaLuF(4)-based upconversion nanophosphors for high-contrast bioimaging in different animal species. , 2012, Biomaterials.

[2]  Weijun Peng,et al.  Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. , 2012, Biomaterials.

[3]  Zhuang Liu,et al.  Upconversion nanophosphors for small-animal imaging. , 2012, Chemical Society reviews.

[4]  Fan Zhang,et al.  Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy. , 2012, Nano letters.

[5]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[6]  Chun-Hua Yan,et al.  Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. , 2011, Biomaterials.

[7]  Young‐Tae Chang,et al.  Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. , 2011, Journal of the American Chemical Society.

[8]  Lianzhou Wang,et al.  Positive and Negative Lattice Shielding Effects Co‐existing in Gd (III) Ion Doped Bifunctional Upconversion Nanoprobes , 2011 .

[9]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[10]  Dongmei Wu,et al.  Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. , 2011, Biomaterials.

[11]  Jianping Yang,et al.  Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. , 2011, Journal of the American Chemical Society.

[12]  Lining Sun,et al.  Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. , 2011, Journal of the American Chemical Society.

[13]  Zhuang Liu,et al.  Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. , 2011, Biomaterials.

[14]  Kai Yang,et al.  Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. , 2011, Angewandte Chemie.

[15]  Yun Sun,et al.  Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. , 2011, Biomaterials.

[16]  Jun Lin,et al.  Electrospinning Preparation and Drug‐Delivery Properties of an Up‐conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite , 2011 .

[17]  Dan Wang,et al.  Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. , 2011, ACS nano.

[18]  Qian Liu,et al.  18F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. , 2011, ACS nano.

[19]  Zhuang Liu,et al.  Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. , 2011, Biomaterials.

[20]  Dongmei Wu,et al.  Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. , 2011, Biomaterials.

[21]  O. Wolfbeis,et al.  Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. , 2011, Angewandte Chemie.

[22]  Muthu Kumara Gnanasammandhan,et al.  Small upconverting fluorescent nanoparticles for biomedical applications. , 2010, Small.

[23]  Juan Wang,et al.  Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. , 2010, Angewandte Chemie.

[24]  Yang Yang,et al.  Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. , 2010, Biomaterials.

[25]  Jun Lin,et al.  Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application , 2010 .

[26]  Yongsheng Liu,et al.  A Strategy to Achieve Efficient Dual‐Mode Luminescence of Eu3+ in Lanthanides Doped Multifunctional NaGdF4 Nanocrystals , 2010, Advanced materials.

[27]  Chunhua Yan,et al.  Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. , 2010, Chemical communications.

[28]  Xiaoxia Du,et al.  Silica‐Coated Manganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonance and Fluorescence Imaging of Cancer Cells , 2010 .

[29]  Yun Sun,et al.  Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. , 2010, Biomaterials.

[30]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[31]  Frank C J M van Veggel,et al.  Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[32]  Chun-Hua Yan,et al.  Clean and Flexible Modification Strategy for Carboxyl/Aldehyde‐Functionalized Upconversion Nanoparticles and Their Optical Applications , 2009 .

[33]  Fuyou Li,et al.  High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. , 2009, Analytical chemistry.

[34]  L. Ye,et al.  Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. , 2009, Biomaterials.

[35]  Christopher G. Morgan,et al.  The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles , 2009 .

[36]  C. G. Morgan,et al.  Upconverting Nanoparticles: The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles (Adv. Funct. Mater. 18/2009) , 2009 .

[37]  P. Choyke,et al.  In vivo multiple color lymphatic imaging using upconverting nanocrystals , 2009 .

[38]  Dongyuan Zhao,et al.  Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. , 2009, Angewandte Chemie.

[39]  Ralph Weissleder,et al.  Upconverting luminescent nanomaterials: application to in vivo bioimaging. , 2009, Chemical communications.

[40]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[41]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[42]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[43]  Tymish Y. Ohulchanskyy,et al.  Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals , 2009 .

[44]  Zhigang Chen,et al.  Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. , 2009, Analytical chemistry.

[45]  Chunhua Yan,et al.  Luminescent rare earth nanomaterials for bioprobe applications. , 2008, Dalton transactions.

[46]  Zhigang Chen,et al.  Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels , 2008 .

[47]  Tymish Y. Ohulchanskyy,et al.  High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. , 2008, Nano letters.

[48]  Fuyou Li,et al.  Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. , 2008, Journal of the American Chemical Society.

[49]  E. Matijević,et al.  Preparation of hollow spherical particles of yttrium compounds , 1991 .

[50]  E. Matijević,et al.  Preparation and properties of uniform coated colloidal particles , 1990 .