Local Tree-Width, Excluded Minors, and Approximation Algorithms

The local tree-width of a graph G=(V,E) is the function ltwG :ℕ→ℕ that associates with every r∈ℕ the maximal tree-width of an r-neighborhood in G. Our main grapht heoretic result is a decomposition theorem for graphs with excluded minors, which says that such graphs can be decomposed into trees of graphs of almost bounded local tree-width.As an application of this theorem, we show that a number of combinatorial optimization problems, suchas Minimum Vertex Cover, Minimum Dominating Set, and Maximum Independent Set have a polynomial time approximation scheme when restricted to a class of graphs with an excluded minor.

[1]  Rajeev Motwani,et al.  Towards a syntactic characterization of PTAS , 1996, STOC '96.

[2]  Martin Grohe,et al.  Deciding First-Order Properties of Locally Tree-Decomposalbe Graphs , 1999, ICALP.

[3]  Robin Thomas,et al.  Excluding a Countable Clique , 1999, J. Comb. Theory, Ser. B.

[4]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[5]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[6]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[7]  Hans L. Bodlaender,et al.  NC-Algorithms for Graphs with Small Treewidth , 1988, WG.

[8]  Frank Harary,et al.  Graph Theory , 2016 .

[9]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[10]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[11]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[12]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[13]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[14]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[15]  RobertsonNeil,et al.  Graph minors. XIII , 1994 .

[16]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[17]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[18]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[19]  Robin Thomas,et al.  Recent Excluded Minor Theorems , 2022 .

[20]  李幼升,et al.  Ph , 1989 .

[21]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[22]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[23]  Jörg Flum,et al.  Fixed-Parameter Tractability, Definability, and Model-Checking , 1999, SIAM J. Comput..

[24]  Martin Grohe,et al.  Fixed-parameter tractability and logic , 1999 .