Multi-objective optimization of lithium-ion battery model using genetic algorithm approach

Abstract A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 °C and 30 °C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries.

[1]  Zhe Li,et al.  A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification , 2014 .

[2]  David A. Wetz,et al.  Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells , 2014 .

[3]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  G. Hinds,et al.  Parameter Sensitivity Analysis of Cylindrical LiFePO4 Battery Performance Using Multi-Physics Modeling , 2014 .

[6]  Xiongwen Zhang Thermal analysis of a cylindrical lithium-ion battery , 2011 .

[7]  Ramesh K. Agarwal,et al.  Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model , 2014 .

[8]  Hosam K. Fathy,et al.  Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell , 2012 .

[9]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[10]  Ramesh K. Agarwal,et al.  Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm , 2014 .

[11]  L. Guzzella,et al.  Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries , 2010 .

[12]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[13]  Xiangming He,et al.  Electro-thermal modeling and experimental validation for lithium ion battery , 2012 .

[14]  Chris Yuan,et al.  Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics , 2014 .

[15]  Chao Lyu,et al.  A new extension of physics-based single particle model for higher charge–discharge rates , 2013 .

[16]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[17]  Mohammadhosein Safari,et al.  Modeling of a Commercial Graphite/LiFePO4 Cell , 2011 .

[18]  Stephen Yurkovich,et al.  A technique for dynamic battery model identification in automotive applications using linear parameter varying structures , 2009 .

[19]  Yonghuang Ye,et al.  Electro-thermal cycle life model for lithium iron phosphate battery , 2012 .

[20]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[21]  Song-Yul Choe,et al.  Modeling of degradation effects considering side reactions for a pouch type Li-ion polymer battery with carbon anode , 2014 .

[22]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[23]  Ralph E. White,et al.  Capacity fade analysis of a lithium ion cell , 2008 .